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Interaction Contributions as Coding Invariant Single Degree of 

Freedom Contributions to Generalized Word Counts 
Ulrike Grömping 

Beuth University of Applied Sciences, Berlin 

 

Abstract 

This paper proposes “interaction contributions” (ICs), tabulated in interaction frequency 

tables, for a coding invariant single degree of freedom decomposition of generalized word 

counts for factorial designs with qualitative factors. The ICs are based on singular value 

decomposition and relate to bias contributions by interaction degrees of freedom on the 

estimation of the intercept. Fontana, Rapallo and Rogantin’s (2016) work on mean 

aberrations has given rise to this work. The paper introduces ICs and their tabulations and 

illustrates their behavior in various examples. Some of these compare the proposed ICs to 

mean aberration tables for situations where both are applicable.  

Keywords: experimental design; qualitative factors; combinatorial equivalence; mean 

aberrations; generalized word length pattern 

1. Introduction 
Xu and Wu (2001) introduced the generalized word length pattern (GWLP) which is now 

widely used as the basis of generalized minimum aberration (GMA). For a design with 

n factors, the GWLP can be written as (A0,A1,…,An), where A0=1 generally holds. For any 

j>0, let Sj = {S ⊆ {1,…,n}: |S|=j} denote the set of all j-factor sets. Aj can be written as the sum 

of contributions aj(S) from all such sets, i.e. as ( )
j

j jSA a S∈= ∑ S . The aj(S) are called 

projected aj values in the sequel. In many applications, the GWLP is applied to orthogonal 

array designs, which implies that A1=A2=0, so that the first interesting entry is A3. In this 

paper, A1=0 is assumed (i.e., level balance of all factors), and the number R with A1=…= 

AR-1=0 and AR>0 is called the resolution of the design; this is in line with the conventional 

understanding of resolution (e.g. in Hedayat, Sloane and Stufken 1999 p.280) for R≥3 and 

extends the concept to R=2, e.g. for supersaturated designs. Based on the projected a3 

values, Xu, Cheng and Wu (2004) proposed “minimum projection aberration” for resolution III 

designs with 3-level factors, and Schoen (2009) used frequency tables of projected a3 values 

for the ranking of 18 run factorial designs.  
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Recently, Grömping and Xu (2014) introduced two decompositions of projected aR values 

(with R the resolution) 

• into sums of R2 values from linear models for explaining all columns of an 

orthogonally coded main effects model matrix for one factor in the R factor set S by a 

full model in the other R–1 factors from S 

• or into sums of squared canonical correlations between an arbitrarily coded main 

effects model matrix for one factor in the R factor set S and a full model matrix in the 

other R–1 factors from S.  

Both decompositions work for full resolution sets S only; they are motivated by considering 

the impact of confounding in the R factor set S on estimation of each factor’s main effects 

coefficients; Grömping (in press) investigated the use of tabulations of those decompositions 

(average R2 frequency tables (ARFTs) and squared canonical correlation frequency tables 

(SCFTs)) for ranking designs and checking design equivalence.  

Xu and Wu (2001) discussed the statistical meaning of the Aj in terms of the confounding 

between j-factor interactions and the overall mean. Following a similar logic, Fontana, 

Rapallo and Rogantin (2016) decomposed the projected aj values into “aberrations” for 

individual interaction degrees of freedom, using the complex contrasts that were introduced 

by Bailey (1982). They attempted to render these decompositions coding invariant by 

permuting the levels of the individual interaction columns, which leads to tabulations of 

“mean aberrations”; however, their approach does not achieve coding invariance for factors 

with more than 3 levels, as can e.g. be verified by calculating the pattern of mean aberrations 

for the cyclic 5-level Latin square (their design F2) after swapping the first two levels for the 

third factor. Fontana et al.’s work motivated the author to develop the truly coding invariant 

decompositions of projected aj values that are presented in this article. These are based on 

singular value decomposition (SVD); ambiguities arising from singular values with multiplicity 

larger than one are resolved in two different ways, which leads to two types of so-called 

interaction contribution frequency tables (ICFTs). The tabulated interaction contributions 

have a statistical interpretation in terms of bias contributions of the interaction to estimation 

of the overall mean, and the ICFTs can be used for assessing combinatorial equivalence of 

designs. 

Section 2 of this paper introduces notation and basic concepts, and the brief Section 3 

provides a fundamental coding invariance theorem. Section 4 develops the bias on the 

intercept from wrongly omitting the highest order interaction in a model with R factors based 

on a design of resolution R. Section 5 presents the decomposition results, relating them to 

previous insights on the bias. Section 6 provides some examples, and the final section 

discusses connections to further related work and reasonable future steps. 
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2. Notation and basic concepts 
Before discussing the basics for factorial designs, some matrix products are defined and 

rules for them established. In the following, the superscript T denotes transposition, 1N and 

0N denote column vectors of N ones or zeroes, respectively, and ei denotes a unit vector with 

the value “1” in position i and zeroes everywhere else. 

Definition 1 (matrix products) 

(i) For an m×n matrix A and an r×s matrix B, the Kronecker product is defined as the 

mr×ns matrix   

11 1

1

n

m mn

a a

a a

⎛ ⎞
⎜ ⎟⊗ =
⎜ ⎟
⎝ ⎠

B B
A B

B B

…
# % #

"
.  

(ii) For an na×N matrix A and an nb×N matrix B, the column wise Khatri-Rao product is 

defined as the nanb×N matrix   

( )1 1c N N= ⊗ ⊗A B a b a b: " ,   

where ai, bi, i=1,…,N denote the i-th columns of A and B, respectively,   

and ⊗ denotes the Kronecker product. 

(iii) For an N×na matrix C and an N×nb matrix D, the row wise Khatri-Rao product is the 

transpose of the column wise Khatri-Rao product of their transposes:   

( ) ( )T TT T 1 1 N N
r c= = ⊗ ⊗C D C D c d c d: : " ,  

where ci and di denote the transposed i-th rows of matrices C and D, respectively. 

(iv) For two m×n matrices A and B, the Hadamard or Schur or element wise product is 

defined as   

A∗B = (aij bij)i=1,…,m, j=1,…,n.  

Lemma 1 

For an N×na matrix A and an N×nb matrix B:  

(i) ( ) ( ) ( ) ( )T T T
r r = ∗A B A B AA BB: : . 

(ii) ( ) ( ) ( ) ( )( )T T T
r r

++
= ∗A B A B AA BB: : ,  

where the superscript “+” denotes the Moore Penrose inverse.  

Lemma 1 (i) follows from ( ) ( ) ( ) ( )T T T
c c = ∗A B A B A A B B: : , which is a known result for 

the column wise Khatri Rao product and the Hadamard product (see e.g. Kolda and Bader 

2009, Section 2.6), by applying it to AT and BT instead of A and B. Lemma 1 (ii) follows from 
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the Moore Penrose inverse for the column wise Khatri Rao product given in Kolda and 

Bader, or by checking the well-known Moore-Penrose conditions.  

We now consider a factorial design with n factors in N runs. The i-th factor has si levels, 

i=1,…,n, which occur equally often, i.e. all factors are level-balanced. The model matrix is 

given as  

M = (M0 M1 M2 … Mn) 

with M0=1N, M1 the matrix of all main effects model matrices X1, …, Xn, M2 the matrix of all 2-

factor interaction model matrices XI({1,2}), …, XI({n-1,n}), and so forth, with XI(S) denoting the 

interaction model matrix for the interaction involving all factors from set S⊆{1,…,n}.  

Definition 2 (normalized orthogonal coding) 

The model matrix M is said to be in normalized orthogonal coding, if  

(i) the columns of Xi have mean 0, are orthogonal to each other and have squared 

length N, 

(ii) for S ∈ Sj, the interaction matrix XI(S) is the row wise Khatri-Rao product of the j main 

effects model matrices Xi, i ∈ S. 

Lemma 2 

If Xi and iX�  are both N × (si – 1) main effects model matrices in normalized orthogonal 

coding for factor i, there is an orthogonal (si – 1) × (si – 1) matrix Q such that   

T
i i i i= ⇔ =X X Q X Q X� � . 

Lemma 2 is obvious from noting that different orthogonal bases for the main effect with all 

columns of the same squared length N can only be obtained from each other by rotation and 

reflection operations. Note that results generalize to complex coding by changing the 

transpose to conjugate transpose. 

 

Lemma 3 

For S ∈ Sj, N2aj(S) = 1N
TXI(S)XI(S)

T1N. 

 

Lemma 3 follows directly from Xu and Wu's (2001) definition of the Aj and is stated as a 

lemma only for ease of reference. 

 

Finally, the paper makes use of SVD: an m×n matrix A can be written as UDVT with matrices 

U (m×m) and V (n×n) such that UTU=UUT=Im and VTV=VVT=In, and an m×n diagonal matrix D 
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of min(m,n) singular values ζi = ζi(A)≥0. The columns of U and V are called left and right 

singular vectors, respectively. The non-zero squared singular values coincide with the non-

zero eigen values of the positive semidefinite matrices ATA and AAT. If all singular values are 

distinct, the first min(m,n) columns of matrices U and V are unique, up to sign switches of 

corresponding column pairs ui and vi. Ambiguities can arise from multiple singular values of 

the same size, which lead to non-unique groups of singular vectors: if N×r sub matrices Usub 

and Vsub correspond to identical singular values, these can be replaced by the pair Lsub and 

Msub with Lsub = UsubQ and Msub = VsubQ with any suitable r×r matrix Q for which QTQ=QQT=Ir.  

3. Coding invariance 
With the tools from the previous section, it is straightforward to identify coding invariant 

matrices related to a linear model in normalized orthogonal coding (see Def. 2 above and 

equations (1) and (2) below) that will later be used for deriving a coding-invariant 

decomposition of the projected aj values: Theorem 1 shows the coding invariance of 

XI(S)XI(S)
T; subsequently, a unique decomposition of aj(S) will be derived based on the eigen 

value decomposition of that matrix, or – equivalently – based on the SVD of the matrix XI(S). 

A corollary to the theorem shows that some aspects of the SVD are coding invariant, while 

others depend on the coding. Note that, in spite of also using singular values, the approach 

of the present paper is quite different from the proposal by Katsaounis, Dean and Jones 

(2013) of using singular values for checking design equivalence for 2-level designs. 

 

Theorem 1 

The matrix XI(S)XI(S)
T does not depend on the choice of normalized orthogonal coding. 

 

Proof: According to Lemma 1, XI(S)XI(S)
T can be written as the Schur product of matrices 

XiXi
T, i ∈S, with Xi a main effects model matrix in normalized orthogonal coding. Because of 

Lemma 2, T T
i i i i=X X X X� �  for iX�  with an arbitrary choice of normalized orthogonal coding for 

factor i. /// 

 

Corollary 

For the SVD XI(S)=UDVT, the matrices U and D do not depend on the choice of normalized 

orthogonal coding, while V depends on that choice. 

 

Proof: XI(S)XI(S)
T = UDVTVDTUT = UDDTUT is the eigen value decomposition of the coding 

invariant matrix XI(S)XI(S)
T; XI(S)

TXI(S) = VDTUTUDVT= VDTDVT is the eigen value 

decomposition of the coding dependent matrix XI(S)
TXI(S).  /// 



8 
 

 

4. The bias of the intercept estimate 
Consider a resolution R design with R factors, R ≥ 2. The linear model in normalized 

orthogonal coding can be written as 

E(Y) = μ + 
1

R
i i

i =
∑ X β  + ( ) ( )

{1,..., },
| | 2

S S
S R

S
⊆

≥

∑ XI Iβ        (1) 

with Y denoting the random N×1 vector of response values. 

Remark 1 

The model matrices in equation (1) depend on the choice of normalized orthogonal coding, 

the entire summands do not, since the corresponding coefficient vectors are modified 

accordingly. This is also true for interaction model matrices, which are row-wise Khatri-Rao 

products: denoting the interaction model matrix with changed coding of one or more factors 

in S as WI(S), the corresponding parameter vector as γI(S), and the Moore-Penrose inverse of 

WI(S) as WI(S)
+=WI(S)

T(WI(S)WI(S)
T)+, we get γI(S)=WI(S)

+XI(S)βI(S)= WI(S)
T(XI(S)XI(S)

T)+XI(S)βI(S), 

and WI(S)γI(S)= XI(S)XI(S)
T(XI(S)XI(S)

T)+XI(S)βI(S) = XI(S)βI(S) because of Theorem 1 and the 

properties of Moore Penrose inverses. Furthermore, note that for XI(S) = UDVX
T, WI(S) = 

UDVW
T, i.e., the SVDs only differ by the matrices of right singular vectors (see the corollary to 

Theorem 1). 

Now, assume that model (1) is correct and we wrongly fit the smaller model  

E(Y) = μ + 
1

R
i i

i =
∑ X β  + ( ) ( )

{1,..., },
2 | | 1

S S
S R

S R
⊆
≤ ≤ −

∑ XI Iβ ,     (2) 

omitting the highest order interaction. The estimate for μ is the average of the Y components, 

with expectation μ + 1N
TXI({1,…,R})βI({1,…,R})/N, i.e., bias 1N

TXI({1,…,R})βI({1,…,R})/N. Note that, 

because of the design’s resolution, the omission of main effects or lower order interactions 

with the any factor would not bias the intercept estimate, i.e., the bias would remain the same 

if we would, e.g., omit an entire factor instead of omitting only the R-factor interaction. Of 

course, this bias strongly depends on the sizes of the unknown coefficients in βI({1,…,R}). 

As was already pointed out by Xu and Wu (2001), aR({1,…,R}) is an indicator of the bias for 

the intercept from the R-factor interaction. In an overall way, according to Lemma 3, 

aR({1,…,R}) is the sum of squares of the multipliers 1N
TXI({1,…,R})/N with which the unknown 

interaction parameters in βI({1,…,R}) enter the bias; it is thus a Frobenius norm and as such 
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provides an upper bound for the sum of squares of the bias vector: ||1N
TXI({1,…,R})βI({1,…,R})/N||22 

≤ aR({1,…,R}) ||βI({1,…,R})||22. The bound is exact for the worst-case βI({1,…,R}) which is collinear 

to XI({1,…,R})
T1N (because this is collinear to the first eigen vector of matrix 

XI({1,…,R})
T1N1N

TXI({1,…,R})). That worst-case βI({1,…,R}) depends on the coding, while the worst-

case bias does not. Denote the matrices of right singular vectors for two different codings 

XI({1,…,R}) and WI({1,…,R}) as VX and VW, respectively. If we write βI({1,…,R})=VXc and 

γI({1,…,R})=VWc, these two vectors correspond to the same contribution to the expected value 

of Y in (1) and to the same bias for the intercept in model (2), i.e. the coding invariant way of 

representing the parameter vector is through the vector c of linear combination coefficients 

for the right singular vectors:  

1N
TXI({1,…,R})VXc/N = 1N

TWI({1,…,R})VWc/N = 1N
TUDc/N = 

min( ,df({1,..., }))

1

N R
i i i

i
c uζ

=
∑   

with iu  the average of the i-th column of matrix U. Consequently, in terms of c, the squared 

bias of 1N
TY/N as an estimator for μ can be written as   

 βI({1,…,R})
TXI({1,…,R})

T1N1N
TXI({1,…,R})βI({1,…,R})/N2 =

2min( ,df({1,..., }))

1

N R
i i i

i
c uζ

=

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

∑ .   (3) 

In considerations like this, it is customary to consider length 1 vectors; here, βI({1,…,R}) = Vc is 

normalized to length 1, if and only if cTc=||βI({1,…,R})||22=1. The simplest such vectors are those 

with c=ei, for which βI({1,…,R}) is exactly the i-th right singular vector of XI({1,…,R}) (depending on 

the choice of normalized orthogonal coding), and the squared bias with this choice of 

βI({1,…,R}) becomes ( )2
i iuζ  (independent of the choice of normalized orthogonal coding). The 

next section will show that these ( )2
i iuζ  yield a coding invariant decomposition of 

aR({1,…,R}). The case of singular values with multiplicity r > 1 will be discussed separately, 

since such singular values imply non-unique singular vectors (see Section 5.2). 

5. Coding invariant decomposition of aj(S) and its relation to the bias 
This section points out, how a coding invariant decomposition of aj(S) can be obtained, and 

how this relates to the bias of the intercept estimate from wrongly omitting the highest order 

interaction I(S). 

5.1. The decomposition 
According to Lemma 3, N2aj(S) = 1N

TXI(S)XI(S)
T1N /N2 = 1N

TUDDTUT1N /N2. Denoting as u  the 

row vector of column averages of U and as D2 the diagonal matrix of squared non-zero 
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singular values, augmented with zeroes as needed, this can be written as uD2 u T, or in the 

form given in Theorem 2. 

  

Theorem 2 

Let ζi=ζi(XI(S)) denote the i-th singular value of the matrix XI(S), iu  the column average of the 

corresponding i-th left singular vector, and df(S) the degrees of freedom from the interaction 

I(S).  

(i) Then the projected aj value aj(S) can be decomposed as   

( ) ( )min( , ( )) 2

1

N df S
j i i

i
a S uζ

=
= ∑ . (4) 

(ii) If all non-zero singular values have multiplicity one, the decomposition is unique.  

(iii) Assuming there is at least one non-zero singular value ζi with multiplicity ri >1 and 

corresponding N×ri matrix Usub,i of left singular vectors, the decomposition (4) is unique if 

and only if 1N
TUsub,i=0ri

T for all such pairs ζi and Usub,i.  

Proof:  

ad (i): The decomposition is obvious from the properties of the SVD:   

If XI(S) = UDVT, then XI(S)XI(S)
T = UDDTUT = UD2UT, with D2 defined as the diagonal matrix of 

squared singular values ζi
2 (augmented with zeroes, if necessary). It follows that 

( ) ( )2

2min( , ( )) min( , ( )) 2T T 21 1
( ) ( )

1 1 1

N df S N df SN
j N S S N i bi i iNN i b i

a S u uζ ζ
= = =

⎛ ⎞
= = =⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑ ∑1 X X 1I I  

ad (ii): If all non-zero singular values are unique, all corresponding columns of the matrix U 

are unique up to sign changes; sign changes do not affect the squared column averages.  

ad (iii): A non-zero singular value ζi with multiplicity ri >1 has a corresponding N×ri matrix 

Usub,i of left singular vectors whose columns are non-unique, as they can be rotated or 

reflected in arbitrary ways; however, if 1N
TUsub,i=0ri

T, the same is also true for all rotated 

versions Lsub,iQ, i.e. 1N
TLsub,I = 0ri

T Q = 0ri
T. Thus, all the corresponding summands in (4) are 

zero, regardless of the choice of columns. If this is the case for all matrices of left-singular 

vectors corresponding to non-zero singular values with multiplicity ri > 1, (4) yields a unique 

decomposition. Otherwise, the decomposition will change, depending on the arbitrary choice 

of left singular vectors.    /// 

Corollary 

(i) It follows from Theorem 2 and equation (3) that the summand ( )2
i iuζ  of (4) is inter-

pretable as the squared bias for the intercept from the interaction I(S) in case βI(S)=vi.  
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(ii) For cases with non-unique summands (see Theorem 2 (iii)), the statement from (i) 

holds for any possible combination of left and right singular vectors. 

 

Definition 3 

(i) For a set S∈Sj with interaction model matrix XI(S), the terms ( )2
i iuζ , i=1,…, df(S) are 

called the interaction contributions for the set. For N < df(S), the last df(S) – N interaction 

contributions are defined as zeroes. 

(ii) For an entire design in n ≥ j factors, the interaction contributions of all j-factor sets S ∈ Sj 

are called the interaction contributions of order j. 

 

The interaction contributions of Definition 3 are coding invariant, but may be non-unique in 

cases with several identical singular values. 

5.2. Resolving ambiguities 
In the following, two different but related ways of obtaining unique summands in equation (4) 

for ambiguous cases are presented, namely a concentrated way (conc) that concentrates the 

entire sum of all ambiguous summands from a particular singular value ζ with multiplicity r in 

a single summand and leaves r-1 zero summands, and an even way that distributes the sum 

evenly over r summands. 

 

Remark 2 (rotations) 

In case of r identical singular values ζ for XI(S), denoting the N×r matrix Usub and the df(S)×r 

matrix Vsub as the corresponding columns of matrices U and V, consider an orthogonal r×r 

matrix Q (QTQ=QQT=Ir) with Lsub = UsubQ and Msub = VsubQ.   

(i) l :=1N
TLsub/N = 1N

TUsubQ/N =: uQ ,   

where l  and u  denote 1×r vectors of column means of Lsub and Usub, respectively. 

(ii) l = 0r if and only if u = 0r. 

(iii) For u≠0r, the total contribution 2 2 2 T 2 T

1

r
i

i
lζ ζ ζ

=
= =∑ l l u u  to (4) is unaffected by the 

choice of Q, while the individual summands can (strongly) depend on Q. 

(iv) T T
( ),sub sub sub sub subS ζ ζ= =X U V L MI  is the coding invariant N×df(S) summand of 

( )SXI  that corresponds to the singular space for the singular value ζ. 
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Remark 3 (the concentrated case) 

Consider the case of r identical singular values for XI(S), applying all notations as given in 

Remark 2. 

(i) Q can be chosen such that l = 2|| ||u  e1
T; this is called the concentrated case. It can 

be obtained by determining Q=HT with H the Householder transformation matrix that 

changes the direction of 
T

2|| ||
u
u

 to collinearity with e1.   

The corresponding summands of (4) are ζ 2
2|| ||u 2 and r–1 zeroes. 

(ii) For the coefficient vector ( )SβI , the bias contribution of the group is   

 T T T1
( ),sub ( ) sub ( ) sub,1 ( )2N S S S SN ζ ζ=1 X l M u mβ β = βI I I I ,  

where sub,1m  is the first right singular vector of the concentrated rotation Msub=VsubHT.  

(iii) Among length 1 vectors ( )SβI , ( )SβI =± sub,1m  maximizes the squared bias 

contribution of the group, and the maximum is ζ 2 2
2u . 

 

The even case does the opposite of the concentrated case: instead of concentrating the 

entire contribution on one degree of freedom, it distributes it as evenly as possible. The 

rotation matrix for achieving the even distribution can be obtained by making use of a 

rectangular r-simplex, which is the generalization of a tri-rectangular tetrahedron to 

r dimensions: the r “legs” (=edges neighboring the apex) all meet at right angles at the apex; 

for the special case used for the even case, the apex is the origin 0r, and all legs have 

length 1, which implies that the base of the r-simplex is equilateral, e.g., an equilateral 

triangle in case r=3. The altitude of such a rectangular r-simplex has the same angle 

acos(1/√r) to all legs and has length 1/√r, and the average of all legs equals the altitude. The 

following remark will be based on a matrix R whose columns consist of the r vertices except 

for the apex; these also define the r legs of length 1, and they yield an orthogonal matrix. 

That matrix is initially chosen such that the base point of the altitude is the point 1/√r e1 

(implying that this is also the average of the columns of R), and then rotated such that the 

altitude becomes collinear with the vector Tu . Note that there are infinitely many possible 

matrices R belonging to a rectangular r-simplex with length 1 legs, apex 0r and altitude 

collinear to e1, because there are infinitely many possible rotations. This implies that – 

though the even interaction contributions are unique – the corresponding pairs of singular 

vectors are not. 
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Remark 4 (the even case) 

For the case of r identical singular values for XI(S), apply all notations as given in Remark 2. 

(i) Q can be chosen such that l =  2
1
r

u  1r
T; this is called the even case. It can be 

obtained by multiplying the inverse HT of the Householder transformation matrix that 

changes the direction of 
T

2|| ||
u
u

 to collinearity with e1 (see Remark 3) from the left 

with an orthogonal matrix R composed of the length 1 legs of a rectangular r-simplex 

with apex 0r and altitude collinear to e1. This achieves an equal angle of Tu to all 

columns of Q, and an equal angle of 1N to all columns of Lsub=UsubQ = UsubHTR. 

(ii) For the corresponding coefficient vector ( )SβI , the bias contribution of the group is 

T T T T1
( ),sub ( ) sub ( ) sub ( )2N S S S r SN r

ζζ=1 X l M u 1 Mβ β = βI I I I . 

(iii) Among length 1 vectors ( )SβI , any vector ( )SβI = ( )1
sub diag 1r rr

±M 1  maximizes the 

squared bias contribution of the group, and the maximum is ζ 2 2
2u ; diagr(±1) 

denotes a diagonal matrix whose diagonal elements are arbitrary combinations of 

"+1" or "-1" values. 

 

Remark 5 

(i) For the case of r identical singular values for XI(S), apply all notations as given in 

Remark 2, and add suffixes c and e for the concentrated and even case, respectively. 

The group’s normalized average right singular vector 1
sub,e rr

M 1  of the even case 

(see Remark 4 (iii), where all permissible sign changes are included through the 

diagonal matrix) coincides with the group’s first right right singular vector msub,c,1 of the 

concentrated case (see Remark 3). 

(ii) Part (i) of the remark holds for all corresponding pairs of Msub,e and msub;c,1; note in 

particular that non-identity diagonal matrices in Remark 4 (iii) correspond to a 

modified Msub,e with an identity matrix instead, implying modified Lsub,e, Msub,c and 

Lsub,c, and the identical maximum ζ 2 2
2u . 

Proof of part (i): Let H denote the Householder transformation of Remarks 3 and 4, R a 

matrix derived from a rectangular r-simplex as stated in Remark 4. Then, according to 

Remarks 3 and 4, 

Lsub,c = UHT,   Lsub,e = UHTR = Lsub,cR,  
Msub,c = VHT,   Msub,e = VHTR = Msub,cR. 



14 
 

Furthermore, the coincidences   

 Lsub,e r r1 = lsub,c,1,  

and  Msub,e r r1 = msub,c,1 

result from the fact that lsub,c,1=Lsub,ce1 and msub,c,1= Msub,ce1, together with the fact that  

R r r1  is r  times the average of the legs of the r-simplex that defined R; this average is 

the altitude 1 r  e1.          /// 

 

5.3. Interaction contribution frequency tables 
The interaction contributions of Definition 3 lend themselves to tabulation and can be used 

for assessing how the bias depends on the vector of interaction coefficients as well as for 

distinguishing non-isomorphic qualitative fixed level designs with the same projected aj 

values. It will be most interesting to consider such tables for projected aR values, with R the 

resolution of the design. Contrary to the decomposition results from Grömping and Xu 

(2014), however, this decomposition works for projected aj values with arbitrary j; the 

statistical interpretation as a bias contribution works as well, if it is acknowledged that this is 

not the only contribution towards the bias of the estimate for μ. 

Definition 4 

The table of the ( )2
i iuζ  obtained from all sets S ∈ Sj – with uniqueness enforced as 

indicated in Remarks 3 or 4, if necessary – is called the Interaction Contribution Frequency 

Table of order j, or ICFTj; it comes in the versions ICFTj,conc (with conc short for concentrated) 

and ICFTj,even.  

6. Examples 
This section gives several examples. Where possible (i.e., for symmetric designs), mean 

aberrations by Fontana et al. (2016) are calculated in addition to ICFTconc and ICFTeven. For 

some smaller designs, the worst case interaction parameter vectors (i.e. the first right 

singular vectors of the concentrated rotation) are also given. Some of the designs are at least 

“generalised regular” or “Abelian group regular” (see Kobilinski, Monod and Bailey in press; 

Grömping and Bailey 2016). They are simply called “regular” in the sequel. 

The first worked example uses the design given in Table 2 of Grömping and Xu (2014), 

which is given again here for convenience. 



15 
 

Table 1: Example design in two 2-level factors and one 4-level factor 

A 0 0 0 0 1 1 1 1 

B 0 0 1 1 0 0 1 1 

C 0 2 1 3 3 1 2 0 

Example 1: A3 = a3({1,2,3} = 1 for the regular design of Table 1 (the AB interaction is 

completely confounded with the 0/2 vs 1/3 contrast of factor C). Factors A and B are coded 

as -1/+1 (unique normalized orthogonal coding), factor C is coded with normalized Helmert 

coding. With S={1,2,3}, the coding-dependent matrix XI(S) and its coding invariant cross 

product XI(S)XI(S)
T are given as 

2 2 3 1 3
0 8 3 1 3

2 2 3 1 3
0 0 3

( ) 0 0 3
2 2 3 1 3

0 8 3 1 3
2 2 3 1 3

S

− − −
−

−
−
−

−
−

− − −

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

XI , T
( ) ( )

3 1 1 1 1 1 1 3
1 3 1 1 1 1 3 1

1 1 3 1 1 3 1 1
1 1 1 3 3 1 1 1
1 1 1 3 3 1 1 1
1 1 3 1 1 3 1 1
1 3 1 1 1 1 3 1

3 1 1 1 1 1 1 3

S S

− −⎛ ⎞
⎜ ⎟− −
⎜ ⎟− −
⎜ ⎟− −= ⎜ ⎟− −
⎜ ⎟− −
⎜ ⎟− −⎜ ⎟− −⎝ ⎠

X XI I . 

The non-zero eigen values of XI(S)XI(S)
T, equal to the non-zero squared singular values of 

XI(S), are ζ1
2= ζ2

2= ζ3
2=8, i.e. there are three non-unique pairs of singular vectors. With the 

SVD algorithm used in R for Windows, the initial squared column means of the matrix U are 

1/48, 1/16 and 1/24, respectively; the contributions to a3(S) are thus 8 times these values, 

i.e., 1/6, 1/2 and 1/3. Concentrating the entire overlap on the first vector, ICFT3,conc shows two 

zeroes and one “1” from these non-zero singular values. Distributing the overlap evenly, 

ICFT3,even shows three 1/3 values instead. The right singular vector related to the only non-

zero singular value in the concentrated case is v1=(-√1/2, √1/6, -√1/3)T, i.e. with this coding, 

the largest bias on the intercept resulting from the three factor interaction occurs for 

coefficient vectors proportional to this v1. The even vectors are non-unique, but their 

normalized average coincides with the above v1. 

Example 2: Consider a regular design in 9 runs with three 3-level factors and an interaction 

model matrix as given in Example 1 of Grömping and Xu (2014), for which A3 = a3({1,2,3} = 

2. With S={1,2,3}, the coding invariant cross product XI(S)XI(S)
T is given as 

T
( ) ( )

8 2 2 2 1 2 2 2 1
2 8 2 2 2 1 1 2 2
2 2 8 1 2 2 2 1 2
2 2 1 8 2 2 2 1 2
1 2 2 2 8 2 2 2 1

2 1 2 2 2 8 1 2 2
2 1 2 2 2 1 8 2 2
2 2 1 1 2 2 2 8 2
1 2 2 2 1 2 2 2 8

S S

− −⎛ ⎞
⎜ ⎟− −
⎜ ⎟− −
⎜ ⎟− −
⎜ ⎟= − −
⎜ ⎟− −
⎜ ⎟− −
⎜ ⎟− −⎜ ⎟− −⎝ ⎠

X XI I . 
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The non-zero eigen values of XI(S)XI(S)
T, equal to the non-zero squared singular values of 

XI(S), are ζ1
2=18, ζ2

2= ζ3
2=…=ζ7

2=9, ζ8
2=0, i.e. there are two unique and six non-unique pairs 

of singular vectors. In this case,   

1

2 8

1 3,
... 0.

u
u u

= −
= = =

 

Thus, the non-uniqueness of the second to seventh pairs of singular vectors is irrelevant (see 

Remark 2 (ii)), and we obtain a unique ICFT3 that shows one interaction contribution 18/9=2 

and seven zeroes. The right singular vector corresponding to the non-zero contribution is 

proportional to (√3 -1 -1 -√3 1 √3 √3 -1), i.e. the most harmful coefficient vectors in terms of 

bias for the intercept are proportional to this vector for the coding used. For this symmetric 3-

level design, the mean aberrations by Fontana et al. (2016) are well-defined and coding 

invariant; they consist of two ones and six zeroes. 

Table 2: Two resolution II designs d1=(A,B1) and d2=(A,B2) in two 4-level factors (transposed) 

A 0 0 1 1 2 2 3 3 

B1 0 1 2 3 0 1 2 3 

B2 0 1 2 3 0 3 1 2 

Example 3: Table 2 shows the two non-isomorphic GMA designs for two 4-level factors in 

8 runs; both have A2=1, and the first one is regular. They can be distinguished by their 

ICFT2,even (d1 has three “1/3” and 6 zeroes, d2 has five “1/5” and four zeroes) but not by their 

ICFT2,conc (both have one “1” and eight zeroes). The worst case length 1 parameter vectors 

are again obtainable as the first right singular vectors (not shown). The mean aberrations are 

three “1/3”s and six zeroes for d1 and four “1/12”s, two “1/6”s and one “1/3” for d2 for the level 

allocations given in Table 2; after swapping levels 1 and 2 in factor A, the mean aberrations 

change to one “1/3”, four “1/6”s and four zeroes for d1 and to three “1/3”s and six zeroes for 

d2.  

Example 3 underlines the fact that mean aberrations for more than three levels depend on 

the level coding. This is also the case for the two 5-level designs investigated by Fontana et 

al. For both of these, ICFTeven and ICFTconc coincide with each other, and the two unique 

ICFTs are also identical (63 zeroes and one “4” each). 

Example 4: The ICFT3 for the classical L18 is given as 
                   0   1/6   1/2   2/3   1    2 

ICFTconc         320     0    28     9   6    1 

ICFTeven         287    36    40     0   0    1 
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Note that from concentrated to even ICFT, the 1 entries turn into 1/2 entries, while the 2/3 

entries turn into 1/6 entries. As this is a mixed level design, the mean aberrations by Fontana 

et al. cannot be calculated. 

Example 5: Table 3 gives ICFT3,conc and ICFT3,even as well as the mean aberrations by 

Fontana et al. for the three non-isomorphic L18 with seven 3-level factors. Here, the mean 

aberrations are well-defined and do not depend on level allocation. Note that, from 

concentrated to even ICFT, the “1/3” entries turn into “1/12” entries, and the “1” entries turn 

into “1/2” entries. From even ICFT to mean aberration, the “2” entries become twice as many 

“1” entries, the “1/2” entries become twice as many “1/4” entries, and the “1/12” entries 

remain unchanged. Thus, mean aberrations are closer to the even than to the concentrated 

ICs. In this context, note that the ICFT3 for the unique GMA design for six 3-level factors in 

18 runs is unique and consists of 120 zeroes and 20 “1/2”s, while there are 100 zero mean 

aberrations and 40 “1/4”s, which is completely analogous. 

Table 3: ICFTs and mean aberration frequency tables (MAFT) for the three non-isomorphic 

orthogonal 18 run designs in seven 3-level factors 
                0  1/12  1/4  1/3   1/2   1    2 

1  ICFTconc   227    0    0    36    16   0    1 

   ICFTeven   119  144    0     0    16   0    1 

   MAFT       102  144   32     0     0   2    0 

2  ICFTconc   233    0    0    24    20   2    1 

   ICFTeven   159   96    0     0    24   0    1 

   MAFT       134   96   48     0     0   2    0 

3  ICFTconc   245    0    0     0    28   6    1 

   ICFTeven   239    0    0     0    40   0    1 

   MAFT       198    0   80     0     0   2    0 

Example 6: For the twelve 3-level columns of the Taguchi 36 run design (see NIST / 

Sematech 2016), the unique ICFT3 and the mean aberration frequency table (MAFT) are 

given as follows:  
value        0   0.0625  0.125  0.201  0.25   0.4375   0.5  0.674 

ICFT      1524        0    192     16     0        0    12     16 

MAFT      1320      384      0     24     0       32     0      0 

Again, some mean aberrations are halves of ICs, like in the previous example, while the 16 

0.4375 mean aberrations are obtained as means of the 16 ICs of 0.201 and the 16 ICs of 

0.674. 
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7. Discussion 
This paper has introduced interaction contributions and the related ICFTs for a new coding 

invariant single degree of freedom decomposition of generalized word counts Aj according to 

Xu and Wu (2001). Like the mean aberrations by Fontana et al., these decompositions yield 

as many contributions as there are degrees of freedom for j-factor interactions. These 

decompositions have the potential to distinguish designs, for which projected aj values are 

the same. They are independent of coding and level allocation, contrary to the mean 

aberrations, for which this property holds for designs with up to three levels only. However, 

calculation times for ICFTs are much worse than those of mean aberration tables, at least in 

the author’s implementation. Thus, it would be helpful if coding invariant mean aberrations 

could be extended to designs with factors at more than three levels. 

Grömping and Xu (2014) and Grömping (in press) considered decompositions of projected 

aR values (R the resolution) based on the relation of main effects to R–1 factor interactions. 

In terms of design quality, the impact of R–1 factor interactions on main effect estimation is 

much more interesting than the impact of R factor interactions on estimation of the overall 

mean. Thus, ICFTs are not particularly interesting as a criterion for design quality. They may, 

however, be useful for distinguishing non-isomorphic designs with identical projected aj 

values. Grömping and Bailey (2016) defined the lenient regularity criterion “CC regularity” 

based on the squared canonical correlation decomposition derived in Grömping (in press). 

So far, a compelling relation of interaction contributions to design regularity has not been 

found; however, it cannot entirely be precluded; for example, it is conceivable that regular 

designs only have integers in the list of concentrated interaction contributions. 

For the cases for which the mean aberrations are uniquely defined, the even ICFT values 

seem to be related to the mean aberrations; the examples – especially Example 6 – have 

shown that the relation is not always straightforward. It will be interesting to investigate the 

connections between the two concepts; ideally, a better understanding of these may 

contribute to developing a coding invariant version of mean aberrations for dimensions larger 

than three, which could become a very useful tool in checking combinatorial equivalence of 

factorial designs.  
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