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Abstract

We propose an algorithm for the creation of mixed level arrays with generalized minimum aberration (GMA).

GMA mixed level arrays are particularly useful for experiments involving qualitative factors: for these, the

number of factor levels is often a consequence of subject matter requirements, while a priori assumptions on

a statistical model are not made, apart from assuming lower order effects to be more important than higher

order effects. Our algorithm creates GMA arrays using mixed integer optimization with conic quadratic

constraints. Fully achieving GMA is feasible for small problems only; for larger problems, the optimization

task is reduced to considering the confounding of low-order effects only. We provide lower bounds for the

lowest-order confounding (given the number of experimental runs). Where one of these bounds is actually

attainable, our algorithm is often fast in providing an array which attains it. Examples illustrate the scope and

usefulness of our algorithm, which is implemented in an R package, using one of two commercial optimizers.

Keywords: Experimental design; Orthogonal arrays; Generalized minimum aberration; Mixed integer opti-

mization.

1 Introduction

Factorial experiments are often run using orthogonal arrays. For example, engineers make ample use of the

collection of arrays provided by the Japanese engineer Genichi Taguchi (see e.g. NIST Sematech 2016). Mixed

level experiments, i.e. experiments for which not all factors have the same number of levels, are common in

applications, especially if some factors are qualitative in nature. If a particular mixed level experiment is

required, availability of a suitable array can be an issue. It is common to create a factorial design from a

subset of the columns of a published array, and Grömping (in press) discussed ways to improve this type of

usage by optimizing the choice of columns.

Of course, optimization of column selection from an existing array cannot be better than the creation of a

tailor-made optimized array for the task at hand. For experiments with qualitative factors, one will often not

have a particular model in mind, but will aim for the estimation of main effects, perhaps also of two-factor

interactions, assuming that lower order effects are more important than higher order effects. For such a

context, Fontana (2017) introduced an algorithm for the creation of an orthogonal array in a given number of

runs that fulfills the quality criterion “generalized minimum aberration” (GMA, see Section 2.1); his proposal

relied on the complex coding (Bailey 1982) and on mixed integer optimization. This paper modifies and

improves Fontana’s proposal: since outer products of effect model matrices are invariant to the choice of

normalized orthogonal coding (see Grömping 2018), we need not rely on the complex coding. Choice of an

arbitrary real-valued normalized orthogonal coding (see Section 2.1) allows us to substantially reduce the
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size of the optimization problem. Furthermore, we choose a pragmatic approach which makes the algorithm

feasible for larger problems: due to the nature of the optimization problem to be solved by mixed integer

optimization, establishing overall GMA is extremely time consuming or even impossible for many problems of

relevant sizes. Therefore, we primarily aim for optimizing aberrations with the goal of minimizing confounding

of lowest-order effects (see Sections 2.1 and 3.3). For these, we provide two lower bounds that allow to confirm

optimality without lengthy optimization iterations, in case a bound is attained. There still remain cases

for which neither confirmation of an optimum nor further improvement is possible; for these, we consider it

valuable to provide “improved” arrays, even if they are not necessarily optimal. All these – GMA designs,

designs with optimized lowest-order confounding and “improved designs” – are what we call “good designs”.

This paper derives the algorithm for obtaining good designs and describes its application to different design

requests. We exemplify easier and harder examples. All calculations have been done with R package

DoE.MIParray (Grömping 2017b), which offers functions based on two different commercial solvers for mixed

integer optimization problems (Mosek and Gurobi, as documented in Mosek ApS 2017 and Gurobi Optimization,

Inc. 2017). Both vendors provide free academic licenses and R packages that support access from within R.

Mixed integer optimization is an area of active research; thus, what seems currently extremely challenging

may become easily doable with future improvements to mixed integer algorithms. It is therefore possible that

the range of applicability for the algorithm will broaden over time.

Section 2 introduces the necessary fundamentals and some basic results. Section 3 describes the algorithm,

and Section 4 applies it to the test cases of Fontana (2017) (4.1) and to further interesting mixed level

requests for orthogonal arrays (4.2) or supersaturated strength 1 arrays (4.3). The discussion highlights the

merits of our proposal and points to needs for further research.

2 Basics

An array for accommodating m factors in n experimental runs can be written as an n × m array d of

symbols. The jth factor has sj levels, which are denoted as 1, . . . , sj , and the n rows of the array d contain

the factor level combinations for n experimental runs. An orthogonal array of strength t in n runs with

m1 factors at s1 levels, . . . , mk factors at sk levels is denoted as OA(n, sm1
1 . . . smk

k , t); if we want to avoid

requesting orthogonality between factors, we speak of balanced arrays and use the analogous notation

BA(n, sm1
1 . . . smk

k , t). For all BA’s, each factor has each of its levels the same number of times. OA’s fulfill

the stricter balance requirement that each pair of factors has each level combination the same number of

times. In statistical applications, one often considers the resolution R (denoted by a roman numeral), which

is t+ 1. An array is called “supersaturated”, if there are fewer rows than needed for accomodating all main

effects degrees of freedom. Supersaturated arrays can have at most strength 1, and we will restrict attention
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to arrays with at least strength 1.

We denote (column) vectors as bold face lower case letters, matrices as bold face capitals; 1n or 0n denote

column vectors of n ones or zeroes, respectively. Comparison for vectors (e.g. r ≥ 0N ) is to be understood

element wise. ⊗ denotes the Kronecker product, the superscript > denotes the transpose.

2.1 GMA and counting vectors

For the considerations to follow, it is helpful to represent the n×m array d via a counting vector r. The

idea is simple: a full factorial array in the m factors would have N =
∏m

j=1 sj runs. We define D as this full

factorial in lexicographic order (i.e. levels of the jth factor from 1 to sj , leftmost factor changing levels most

slowly). We can then represent an n×m array d by the N × 1 vector r that contains for each row of D the

frequency with which it is contained as a row in d. This vector is called the counting vector. Of course, the

sum of all elements of r is n.

The quality criterion “generalized minimum aberration” (GMA) was introduced by Xu and Wu (2001) and

is based on the generalized word length pattern (GWLP), which measures for each effect order (0=inter-

cept=overall mean, 1=main effects, 2=two-factor interactions, . . . ) the amount of confounding with the

overall mean. The GWLP is calculated from model matrices in “normalized orthogonal coding”:

Definition 1 (normalized orthogonal coding). Let M = (1N

...M1
... . . .

...Mm) denote the N ×N model matrix

of the full model for the unreplicated full factorial design D, with Mj denoting the N × df(j) matrix of

interaction effect columns for all j-factor interactions. Then M is said to have normalized orthogonal coding,

if

(i) M0 = 1N ,

(ii) all columns of M1 (main effects columns) have mean 0 and squared Euclidean norm N and are orthogonal

to each other,

(iii) and the df(j) columns of Mj , j > 1, are obtained as the products of j columns from M1 that refer to

j distinct factors.

Note that Definition 1 implies that all columns of the matrix M have mean zero and squared norm N and are

orthogonal to each other. Furthermore, note that Definition 1 (iii) corresponds to the usual way of obtaining

model matrix columns for interaction effects. The critical step is thus the choice of a coding for the main

effects; examples of normalized orthogonal codings for 2-level, 3-level and 4-level main effects factors are

given in Table 1. We observe that the complex coding obtained from the sth roots of the unity is another

example of normalized orthogonal coding. For actual designs (called fractions F in the following), the full

model model matrix MF = (1n

...MF ;1
... . . .

...MF ;m) is obtained from M by omitting runs not present in the
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Table 1: Contrast matrices for s = 2, 3, 4
s = 2

-1
1

s = 3
−
√

3/2 −
√

1/2√
3/2 −

√
1/2

0
√

2

s = 4
−
√

2 −
√

2/3 −
√

1/3√
2 −

√
2/3 −

√
1/3

0
√

8/3 −
√

1/3
0 0

√
3

fraction (and duplicating runs occurring multiple times, if applicable). MF has normalized orthogonal coding

if the M it has been taken from complies with Definition 1.

The GWLP is denoted as (A0, A1, . . . , Am), with A0 = 1 (confounding of the overall mean with itself). Aj is

called the number of (generalized) “words” of length j, and it is calculated as the sum of squared column

averages over all df(j) columns of MF ;j , where MF has normalized orthogonal coding. The strength t of an

array is any positive integer for which A1 = · · · = At = 0; one usually identifies t with the maximum possible

strength; the resolution of an array is the integer R such that A1 = · · · = AR−1 = 0, AR > 0; we thus have

R = t + 1, as was mentioned before. GMA consists in minimizing A1, A2, A3, . . . in turn, i.e., one first

maximizes the resolution, and then minimizes the number of shortest words AR, followed by the number of

second shortest words AR+1, and so forth.

With our notation, we can write Aj = 1
n2 1>n MF ;jM>

F ;j1n = 1
n2 r>MjM>

j r. Thus, minimizing Aj is equivalent

to minimizing the quadratic form r>MjM>
j r w.r.t. the choice of a non-negative N ×1 integer counting vector

r with sum n. The matrix Hj = MjM>
j has some useful properties which help to make the optimization

feasible. The following sub section derives these.

2.2 Properties of Hj

Before looking at Hj itself, we consider properties of normalized orthogonal contrast matrices. Let Cs denote

the s× (s− 1)) main effect contrast matrix for an s-level factor in normalized orthogonal coding (the matrices

in Table 1 are examples of C2, C3 and C4). Grömping (2018) showed that outer products of effect model

matrices are invariant to the choice of normalized orthogonal coding. This applies in particular also to the

matrices Cs themselves, which are effect model matrices in a simple one-factor model with s runs.

The following lemma provides a formula for the coding invariant matrix CsC>s which will be useful for

proving that the matrices Hj consist of integer elements only.

Lemma 1. Let Cs denote the contrast matrix for an s-level effect in normalized orthogonal coding. Then

CsC>s has diagonal elements s− 1 and off-diagonal elements −1.

Proof. The proof is by induction. Because of the coding invariance of the outer product, we can use any
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particular normalized orthogonal coding and will use the normalized Helmert coding for which the first few

contrast matrices are given in Table 1. For 2-level factors, the assertion is trivial. Assume that the assertion

holds for an s-level factor. The contrast matrix Cs+1 can be written as

Cs+1 =

 √
s+1

s Cs −
√

1
s 1s

0>s−1
√
s

 .

For the (s+ 1)× (s+ 1) outer product, this implies

Cs+1C>s+1 =

 s+1
s CsC>s + 1

s 1s1>s −1s

−1>s s

 .

It remains to be verified that the top left block is of the stated form: for the diagonal elements, s+1
s ·(s−1)+ 1

s =

s, for the off-diagonal elements s+1
s · (−1) + 1

s = −1. Thus, the stated form for Cs indeed implies the stated

form for Cs+1, which finishes the proof.

As an aside, note that the explicit representation for the outer product of Cs implies that there is the single

non-zero eigenvalue s with multiplicity s − 1 and one zero eigenvalue with corresponding eigenvector the

normalized vector 1s.

Hj = MjM>
j is the sum of the outer products of the df(j) individual columns of Mj , but can also be written

as a sum of outer product matrices over all
(

m
j

)
j-factor interactions, i.e. as

∑
S⊆{1,...,m},|S|=j XI(S)X>I(S),

where XI(S) denotes the model matrix from the interaction among the factors in the set S = {i1, . . . , ij}

for the unreplicated full factorial array D. According to Grömping (2018), the summands of this sum are

invariant to the choice of normalized orthogonal coding, which of course implies coding invariance of the sum

as well. Thus, we can simply choose an arbitrary normalized orthogonal coding, be it the complex coding

chosen in Fontana (2017) or another one like e.g. normalized Helmert coding, available as contr.XuWu in R

package DoE.base. The coding-invariant matrices Hj (calculable from that coding) have rank df(j), where

df(j) denotes the number of degrees of freedom for all j-factor interactions and coincides with the number of

columns of Mj . According to Grömping (2018), XI(S)X>I(S) = Xi1X>i1
? · · · ?Xij

X>ij
, where ? denotes the

Hadamard or Schur (= element wise) product. Consequently, investigation of outer products of main effects

model matrices will provide insights into the nature of Hj . Let X1 denote the main effect model matrix

of the first factor in the full factorial array D; because of lexicographic order, X1 = Cs1 ⊗ 1s2·····sm , and

X1X>1 = (Cs1C>s1
)⊗ (1s2·····sm

1>s2·····sm
). Thus, X1X>1 consists of elements s1 − 1 and −1 only, and all its

diagonal elements are s1 − 1. Analogous reasoning applies to all main effects model matrices, i.e. the outer

product of Xj contains elements sj − 1 and −1 only, with all diagonal elements equal to sj − 1 (more could

be said, but will not be used now). Consequently, XI(S)X>I(S) has elements that can be obtained as products
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of −1 entries and the dfs of the factors involved; in particular, its diagonal elements are
∏j

i=1(sij − 1). The

overall matrix Hj is the sum of such matrices over all S with |S| = j. As such, it trivially has integer entries

only. Some properties of the matrix Hj are summarized in the following lemma. Part (ii) of the lemma holds,

because the full factorial array, represented by r = 1N , has Aj = 0 for all j > 0.

Lemma 2. The matrix Hj = MjM>
j has the following properties:

(i) It is positive semidefinite with rank df(j).

(ii) Its elements sum to zero.

(iii) All its elements are integers.

The algorithm will make use of the factorization Hj = MjM>
j with the N × df(j) matrix Mj . This

factorization brings a substantial advantage versus the proposal by Fontana (2017), who used the Cholesky

decomposition Hj = UjU>j with square matrices Uj instead: since the number of additional variables needed

in conic quadratic constraints (see Section 3) depends on the number of columns of Mj or Uj , respectively,

our formulation requires fewer variables and thus brings larger problems into reach. Nevertheless, the size N

of the full factorial limits usability of the algorithm.

2.3 Lower bounds for AR and sum of the Aj

Grömping and Xu (2014) reported a lower bound for AR in R factor arrays of resolution R (their Theorem 5);

for m factor arrays with m > R, a lower bound can be derived by summing the lower bounds over all R factor

subsets of the m factors. The algorithm discussed later in this paper can make use of a lower bound for

n2AR; this is provided in the following two propositions.

Proposition 1. Consider an array d in n runs and m factors with resolution R (i.e., with strength t = R−1).

Then,

AR(d) · n2 ≥
∑

S⊆{1,...,m},|S|=R(
∏

i∈S si − rS) · rS , with rS the rest when dividing n by
∏

i∈S si.

For example, if an OA(18, 2133, 2) is sought, there are three 3-factor sets S with one 2-level factor and two

3-level factors each (rS = 0) and one 3-factor set S with three 3-level factors (rS = 18). With Proposition 1,

A3 · 182 ≥ 3 · (18− 0) · 0 + (27− 18) · 18 = 9 · 18, which implies A3 ≥ 0.5.

Following Grömping and Xu (2014), the bound of Proposition 1 is fulfilled, if and only if all R factor sets

have weak strength R, i.e. have resolution R and do not have duplicate rows. This is most often the case for

relatively small mixed level arrays, for which the algorithm is most useful. For symmetric s-level arrays, the

bound is zero whenever n is a multiple of sR, because rS = 0 for such situations.
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For balanced supersaturated arrays, which have resolution II, Ai, Fang and He (2007) and Liu and Lin (2009,

their Lemma 2) published equivalent lower bounds for the quality criterion “expected χ2 value” or “sum of

χ2 values” (related to each other by the factor
(

m
2
)
for the number of pairs) that are closely related to A2:

according to Grömping (2017a), n times the A2 contribution of a pair of factors equals the χ2 contribution

of the pair. Thus, these lower bounds can be easily adapted for A2 (multipliers 2/(nm(m − 1)) or 1/n,

respectively), see the following proposition. In general, the lower bound from Ai, Fang and He (2007) or Liu

and Lin (2009) is sharper for supersaturated arrays, while the bound from Proposition 1 is sharper for arrays

that are not saturated; this is illustrated by Figure 1 for 12-run arrays with one 3-level factor, one 4-level

factor and x 2-level factors (for x < 6, negative calculation results for the bound from Proposition 2 have

been replaced by the trivial lower bound 0).

Proposition 2. Consider an array d in n runs and m factors with resolution 2 (i.e., with strength 1), with

factor i at si levels, i = 1, . . . ,m. Then,

A2(d) · n2 ≥ n2

2(n−1)

(
(
∑m

i=1 si)
2 − (n− 1 + 2m) (

∑m
i=1 si) +m(m+ n− 1)

)
.

5 10 15 20

0
5
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number x of 2−level factors

lo
w
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nd
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r A

2

vertical line: saturation border

Figure 1: Bounds of Propositions 1 (open symbol) and 2 (closed symbol) for BA(12, 2x3141, 1)

Note that n2A2 is always integral. Thus, in order for the bound of Proposition 2 to be sharp, it must be

integral, which is often not the case; thus, it can be slightly sharpened for practical use.

The maximum of the bounds resulting from Propositions 1 and 2 can be used in the optimization process;

since mixed integer optimization can be extremely slow to confirm optimality, its incorporation can be very
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helpful for situations for which it is in fact attained, because optimality is then known and does not need to

be confirmed by reducing the gap to zero in the mixed integer algorithm (see Section 3).

In addition to the lower bounds for AR, for arrays with distinct rows, i.e. counting vectors r with binary

elements, a simple formula for the sum of the Aj can be given:

Proposition 3. Considerm factors with s1, . . . , sm levels, for whichN =
∏m

j=1 sj is the size of an unreplicated

full factorial array D. For any unreplicated n run array d in these m factors, the sum of the GWLP entries is∑m
j=0 Aj(d) = N/n.

In words, Proposition 3 states that the sum of the Aj is the inverse proportion of the degrees of freedom

needed for a full model (equal to the run size of the full factorial) that can be accomodated in an n run array.

For regular symmetrical s-level arrays, Proposition 3 follows from the number of generators needed, noting

that each generator contributes s− 1 to the sum (i.e. the number of words has to be multiplied with s− 1 for

obtaining the entries of the GWLP). For general symmetrical arrays, Proposition 3 directly follows from Xu

and Wu’s equation (8) with j = 0, and noting that B0(d) = 1 if and only if array d does not have repeated

rows and that B′j(d) = Aj(d). For mixed level arrays, the analogous reasoning is not explicated in Xu and

Wu (2001), but does also apply (personal communication with Hongquan Xu). For obtaining GMA arrays,

Proposition 3 implies that it suffices to optimize A1, . . . , Am−1, because Am = N/n− 1−
∑m−1

i=1 Ai, provided

d has distinct rows.

2.4 Quadratic cones

A cone is a set C for which a ∈ C =⇒ ∀λ ≥ 0 : λa ∈ C. A quadratic cone is defined as Qk =

{(x1, x2, . . . , xk) : x1 ≥
√
x2

2 + · · ·+ x2
k}. A rotated quadratic cone is defined as Qk

r = {(x1, x2, . . . , xk) :

x1, x2 ≥ 0 and 2x1x2 ≥ x2
3 + · · ·+ x2

k}. For both Qk and Qk
r , it is obvious that they are cones. Qk

r has been

written in the Mosek version of the definition (see Mosek ApS 2014), which is based on a proper rotation: the

(x1, x2) plane of Qk is rotated such that the rotated coordinates x1,r and x2,r are proportional to x1 + x2 and

x1 − x2, respectively, i.e. x1,r = (x1 + x2)/
√

2 and x2,r = (x1 − x2)/
√

2. With x1,rx2,r = x2
1/2− x2

2/2, the

relation between Qk
r and Qk is obvious. Gurobi omits the “2” on the left-hand side in Qk

r . This corresponds

to the transformation x1,r = x1 + x2 and x2,r = x1 − x2 (not only rotated but also stretched by the factor
√

2), which implies x1,rx2,r = x2
1 − x2

2. This paper writes conic quadratic constraints in the Mosek notation;

Gurobi’s notation can be equivalently used by involving the multiplier 2 in appropriate places.
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2.5 Quality criteria for mixed level arrays: ARFT and SCFT

Grömping (2017a) introduced refinements of AR; these can be used for distinguishing non-isomorphic arrays

with the same GWLP, and they are also usable as quality criteria, especially with a view to using an array

as a screening design. Since these will be referenced in the Examples section, they are briefly reviewed

here. Average R2 frequency tables (ARFTs) and squared canonical correlation frequency tables (SCFTs) for

resolution R arrays are based on considering all R factor sets.

Each R factor set contributes an average R2 value for each of its factors, and these values are tabulated in

ARFTR; the average R2 value for an s-level factor in a set is the average over the R2 values obtained from

separate linear models for each of the s− 1 main effects model matrix columns in an (arbitrary) orthogonal

coding as responses, using the full model in the other R− 1 factors from the set. Thus, an average R2 value

of “1” stands for complete confounding of the factor’s main effect by the interaction of the other R− 1 factors

in the set. The larger the largest average R2 value, the worse the worst-case confounding of a main effect by

R− 1 other factors (which is captured in the generalized resolution, see Grömping and Xu 2014). An array is

considered better than another array, if its largest average R2 value is smaller, in case of ties if the largest

entry is less frequent, in case of ties, if the second largest average R2 value is smaller, and so forth.

SCFTs go into more detail than ARFTs by considering individual degrees of freedom in a coding invariant

way (worst-case coding): for each factor in an R factor set, they tabulate the squared canonical correlations

between the factor’s main effects model matrix with the full model matrix of the other R− 1 factors. Ones

among the squared canonical correlations stand for the existence of a coding for which a main effect df is

completely confounded by the full model in R− 1 other factors. Comparison of arrays w.r.t. SCFTs proceeds

in complete analogy to optimization w.r.t. ARFTs. Grömping (2017a) proposed to use ARFTR as the

primary quality criterion and bring in SCFTR in case of ties.

Grömping and Bailey (2016) defined three new regularity types that are more lenient than conventional

ones. These are related to SCFTs and ARFTs. In particular, SCFTs containing zeroes and ones only is a

necessary criterion for all types of regularity, including the conventional ones. Grömping (2017a) argued

that non-regular arrays are often preferrable for screening situations: if a resolution R array is CC regular

(i.e., has zero or one squared canonical correlations only), the one-valued squared canonical correlations

imply that there is a main effect coding for which a particular main effect degree of freedom is completely

confounded by an R− 1 factor interaction. For arrays of resolution II, the presence of large average R2 values

or squared canonical correlations is particularly harmful, since it implies a strong relation between main effect

estimates for two factors. Section 4.3 references a supersaturated array that was optimized elsewhere for

weak equidistance and has a very beneficial ARFT2 and SCFT2 behavior. We will see various examples for

which our algorithm yields arrays with good ARFTs and SCFTs.
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3 The algorithm

3.1 The overall strategy

For achieving GMA, one has to successively request minimization of A1, A2, A3, and so forth. Since each

minimization may take a lot of effort, avoidance of minimization steps is a great time saver. We therefore

implement a resolution option: if resolution R is requested, the algorithm searches for a feasible counting

vector that respects the requested resolution. This is a an integer-constrained linear optimization problem with

constant objective function, which can usually be solved much faster than the conic quadratic optimization

problems of later steps; the potential for this type of improvement was already mentioned in Fontana (2017).

Furthermore, we allow the specification of a value kmax ≤ m− 1 (according to Proposition 3, m is usually

not needed) and limit optimization to Aj with j ≤ kmax, i.e. we restrict attention to a choosable maximum

word length.

Thus, the algorithm has the following overall steps:

1. ensure the requested resolution R0 (or establish that it is not feasible)

2. minimize AR0 (quadratic objective function), subject to the resolution constraints (linear constraints

only), taking the solution of step 1 as the starting value. This step can make use of the lower bound

that was introduced in Section 2.3: optimality can be ascertained if this bound is reached, which (if

applicable) usually happens much faster than the confirmation of optimality by reducing the gap to

zero (see below).

3. for kmax > R0, minimize Aj , R0 < j ≤ kmax (quadratic objective function), subject to the resolution

constraints (linear) and all prior constraints obtained for Aj′ , R0 ≤ j′ < j (quadratic inequality

constraints).

Today’s optimization software transforms minimization of a quadratic objective into minimization of a linear

objective under a conic quadratic constraint, and quadratic constraints are likewise considered in this way.

This is for example described in Mosek ApS (2014). The following section details the optimization problems

to be solved for the algorithm outlined above.

General mixed integer optimization strategies are described in the documentations for Gurobi and Mosek

(Gurobi Optimization, Inc. 2017 and Mosek ApS 2017); specific details are partly hidden to the public. In

short, strategies combine solving a relaxed problem without integrality constraints and then trying to find

integral solutions that are (almost) as good; heuristics are used in addition to simplex methods and branch

and bound / branch and cut strategies, and optimality is proven, if the optimum of the relaxed problem

equals the integral optimum. The discrepancy between relaxed and integral problem is called the “gap”, and
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it is usually considered in relative terms as

gap = current integral minimum− current relaxed minimum
current integral minimum .

The current relaxed minimum is (of course) a lower bound for the integral minimum; providing the algorithm

with a known more aggressive lower bound helps to prove optimality; with Gurobi and Mosek, the gap is

nevertheless calculated based on the current relaxed minimum rather than a user-provided lower bound.

Optimality is considered confirmed, when the gap becomes zero or a user-provided lower bound is reached.

Thus, mixed integer optimization has two tasks: driving the current minimum as far down as possible and

proving its optimality by reducing the gap. In many examples, reaching the actual optimum happens much

faster than proving its optimality.

3.2 The sequence of optimization problems

The resolution step has to solve the optimization problem (1) for a specified resolution R0. This linear

problem with constant objective is often solved fast, or its infeasibility is established. In this and all further

problems, it is also possible to constrain r to be binary instead of only integral, which guarantees an array

with distinct rows. Once a feasible r for a resolution R0 array has been found, the quadratic optimization

problem of step 2 minimizes AR0 , starting from the solution of problem (1). This corresponds to solving the

quadratic optimization problem (2).

min 0(1)

subject to

1>N r = n,

M>
1 r = 0df(1), . . . ,M>

R0−1r = 0df(R0−1),

r ≥ 0N ,

r integral.

min r>HR0r(2)

subject to

1>N r = n,

M>
1 r = 0df(1), . . . ,M>

R0−1r = 0df(R0−1),

r ≥ 0N ,

r integral.

Problem (2) can be rewritten as a linear problem with conic quadratic constraint using the following

considerations:

• HR0 = MR0M>
R0

, with the N × df(R0) matrix MR0 .

• Define df(R0) variables (not restricted to be non-negative) and collect them in the df(R0)× 1 vector

yR0 . Restrict these by the equation yR0 = M>
R0

r ⇐⇒ M>
R0

r − yR0 = 0df(R0). This adds df(R0)

additional variables and df(R0) additional equality constraints.
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• Define two further non-negative variables tR0
1 and tR0

2 , and request (tR0
1 , tR0

2 , yR0
1 , . . . , yR0

df(R0)) to be from

the rotated cone Qdf(R0)+2
r = {(x1, . . . , xdf(R0)+2) : 2x1x2 ≥ x2

3 + · · ·+ x2
df(R0)+2, x1, x2 ≥ 0}. Restrict

tR0
2 = 0.5. Then the cone constraint is equivalent to tR0

1 ≥ yR0>yR0 = rH>R0
r. Remember that the

cone definitions used by different softwares are slightly different; for example, Mosek uses the above

definition, Gurobi omits the “2”. This difference can be equalized by restricting tR0
2 to 0.5 in Mosek and

to 1 in Gurobi.

• As the objective, choose minimization of tR0
1 ; note that tR0

1 is guaranteed to be integral for integral r,

because HR0 was shown to be integral.

min tR0
1(3)

subject to

1>N r = n,

M>
1 r = 0df(1),

. . . ,

M>
R0−1r = 0df(R0−1),

M>
R0

r− yR0 = 0df(R0),

r ≥ 0,

tR0
1 ≥ 0, tR0

2 = 0.5,

(tR0
1 , tR0

2 , yR0
1 , . . . , yR0

df(R))
> ∈ Qdf(R)+2

r ,

r and tR0
1 integral.

min tR0+1
1(4)

subject to

1>N r = n,

M>
1 r = 0df(1),

. . . ,

M>
R0−1r = 0df(R0−1),

M>
R0

r− yR0 = 0df(R0),

M>
R0+1r− yR0+1 = 0df(R0+1),

r ≥ 0,

tR0
1;min + 0.3 ≥ tR0

1 ≥ 0, tR0
2 = 0.5,

tR0+1
1 ≥ 0, tR0+1

2 = 0.5,(
tR0
1 , tR0

2 , yR0
1 , . . . , yR0

df(R0)

)>
∈ Qdf(R0)+2

r ,(
tR0+1
1 , tR0+1

2 , yR0+1
1 , . . . , yR0+1

df(R0+1)

)>
∈ Qdf(R0+1)+2

r ,

r, tR0
1 and tR0+1

1 integral.

The conic-quadratic version (Mosek variant) of the quadratic optimization problem (2) can thus be re-written

as (3). Assuming that (3) has a solution with positive optimum and kmax > R0, the solution vector to (3)

can be used as a feasible starting value for the minimization of AR0+1, which is addressed by the optimization

problem (4). The quadratic objective in (4) is treated analogously to the previous one, i.e. df(R0 + 1) + 2

additional variables are added, with df(R0 + 1) + 1 equality constraints and one conic quadratic constraint,

and the first additional variable becomes the objective which is to be minimized. In addition, the previous

constraints are retained, with the exception of the constraint on tR0
1 , which must be adjusted: denoting as

tR0
1;min the optimized objective value of problem (3), one can request tR0

1 = tR0
1;min; however, if the first step
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has been stopped for a timing constraint (not recommended, see Section 3.3), the constraint for variable

tR0
1 should rather be chosen as 0 ≤ tR0

1 ≤ tR0
1;min, in order to allow improvements at later steps. Note that

tR0
1;min is an integer, so that an improvement will be noticeable, and a liberal tolerance can be added to the

right-hand side without risking deterioration (we choose 0.3). Should kmax be larger than R0 + 1, problem (4)

can be extended with further variables and constraints, analogously to the extension from (3) to (4).

Where tR0
1;min turns out to be zero in problem (3) (i.e. better than requested resolution is feasible), the

variables tR0
1 , tR0

2 and y and all related constraints (including the conic quadratic one) can be removed, while

adding the linear constraint M>
R0

r = 0df(R0). In that case, the problem to be solved next is again of type (3),

with increased R0.

As was mentioned before, our approach representing Hj by MjM>
j in conification of the quadratic problem

brings a substantial reduction in the number of variables used versus Fontana’s (2017) Cholesky decomposition,

which would require N + 2 additional variables per optimized Aj in the optimization model. For full GMA

optimization, we require 2(kmax −R0 + 1) +
∑kmax

j=R0
df(j) ≤ 2(kmax −R0 + 1) +N additional variables for

optimizing (AR0 , . . . , Akmax
) after an initial resolution step; this is much less than the (kmax−R0 + 1)(N + 2)

additional variables that would be required when using a Cholesky decomposition (as in Fontana 2017), which

does not exploit the rank defects of the Hj .

3.3 Practical aspects

The algorithm is implemented in the R package DoE.MIParray; depending on the choice of kmax, it optimizes

low order confounding only or (with kmax = m− 1 (or m)) can be used to ensure GMA. However, there are

resource-driven practical problems. Running optimization without explicit time constraints will often run

for a very long time, with an eventual interrupt by the user, risking to loose results. Running with a time

constraint guarantees that the result obtained will be stored, but unfortunately hot-starting is of limited

value: one can use the latest solution as a starting value, but it is not possible to preserve the branch and

bound interim results, which will have to be re-established, when re-starting the algorithm.

In many applications, obtaining GMA for all word lengths will not be feasible. Generally, it should

be considered more important to optimize shorter word lengths. For example, if AR can be optimized,

optimization of AR+1 is of interest; otherwise, one would rather further improve AR. Whenever the lower

bound according to Propositions 1 or 2 is reached (applicable for the shortest words only), one can safely

switch to the next word length; for other cases, it is often not easy or even impossible to achieve the conviction

that an optimum has been reached. It should usually be sufficient for practical purposes to optimize AR and

AR+1 (provided R is the resolution), or AR only for the more difficult cases. If even optimality of AR cannot

be reached or confirmed, an array constructed by the algorithm may still be useful; in such cases, it should
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be compared to arrays obtained from other approaches, e.g. the column selection optimization implemented

in R package DoE.base (Grömping in press).

Clearly, it is desirable to have an array consist of distinct runs only. Thus, it is worth a try to request binary

instead of integer elements for the vector r. Such a request, if feasible, should implicitly lead to better optima,

because GMA arrays have unreplicated runs, where possible. Therefore, R package DoE.MIParray uses a

restriction of r to binary as the default and allows relaxation to general integer as an option. Sometimes,

the optimum array with distinct runs is nevertheless more easy to find by initially permitting repeat

runs, i.e. general integer elements of r. Playing with optimizers’ options can also sometimes help to solve

difficult cases, particularly with Gurobi. And, although the optimization problem (of course) remains the

same regardless of the order in which the variables are entered, optimization speed and the quality of the

improvement reached by an optimizer within reasonable time does sometimes (strongly) depend on that order

(see also the next section).

4 Examples

The calculations were done using two threads on a Windows machine with i7 processor with four cores and

32GB RAM, using the R package DoE.MIParray with R 3.4.1.

4.1 Test cases from Fontana (2017)

We start by addressing the test cases investigated in Fontana (2017). First, we consider accommodating five

2-level factors in 4 (not in Fontana 2017), 6, 8, 10, 12, 14 or 16 runs. We ran the algorithm from scratch

without using any prior knowledge (i.e. optimizing A1, A2, and so forth, up to A5, as proposed in Fontana

2017), or we requested each array to have the correct resolution R, so that only AR to A5 needed to be

optimized (we ignored the fact that optimization of A5 can be skipped due to Proposition 3). For both these

approaches, we applied the default settings in the R package DoE.MIParray, using both the optimizers Mosek

and Gurobi (using package DoE.MIParray’s functions gurobi_MIParray and mosek_MIParray, respectively).

In all cases, the correct GMA array was found. The run times are reported in Table 2. The table shows that

running from scratch can take substantially longer than starting from the correct resolution, particularly

for the two resolution II cases in 10 and 14 runs with Mosek. It can also be seen that there is no general

advantage of one software over the other. The run times we found for our implementation are substantially

shorter than those reported in Fontana (2016); a portion of the improvement is due to a more powerful

computer, another small portion may be due to the fact that Fontana accessed R via SAS or that the latest

version of Mosek is faster, but the main contributors are most likely the smaller matrices and in particular

16



Table 2: Run times (s) for finding the GMA array for five 2-level factors

n R AR bound Fontana 2017 Mosek all Gurobi all Mosek from AR Gurobi from AR

4 II 2.000 1.688 2.94 2.17 1.76 1.98
6 II 1.111 1.111 28 13.12 24.39 10.25 18.65
8 III 2.000 0.000 8 0.60 0.44 0.43 0.37

10 II 0.400 0.400 96 32.83 5.13 0.62 1.86
12 III 1.111 1.111 9 1.22 1.11 0.62 0.86
14 II 0.204 0.204 3415 126.86 18.94 1.28 3.65
16 V 1.000 1.000 29 0.35 0.28 0.15 0.12

the incorporation of the lower bound for confirming optimality. Fontana (2017) also reported a search time of

26 min for finding an OA(16, 26, 3); the longest time used for this optimization with our implementation was

below 2 s, even without exploiting knowledge about the resolution (but with exploiting lower bounds for

confirming optimality).

It can be recommended to generally make an aggressive guess of the resolution, since infeasibility is often

detected very fast. For all arrays of Table 2, the next larger resolution violates one of the known rules for the

existence of arrays; as these rules are enforced before starting the optimization (using function oa_feasible

from R package DoE.base), no time will be lost by lengthy searches for infeasible arrays. There are also other

cases, however: for example, there is no OA(54, 36, 3) (see e.g. the website by Eendebak and Schoen 2010),

although none of the feasibility bounds is violated; the infeasibility of this array is not established fast by

either Mosek or Gurobi.

Fontana (2017) created a GMA OA(18, 2133). Following the recommendation for an aggressive choice of

resolution, an initial attempt for resolution IV was quickly rejected as infeasible. The GMA array was easily

found by both optimizers, and both found the same array, since the GMA array is unique (see the website by

Eendebak and Schoen 2010). The array attains the lower bound A3 = 0.5, which was already calculated in

Section 2.3. This benefits our algorithm, whose run times were about 6 s (Mosek) or 19 s (Gurobi), respectively,

even when running from scratch; Fontana (2017) reported 270 s.

Fontana (2017) also produced a GMA OA(24, 223141, 2) and reported a run time of 37 min. Our algorithm

produced a confirmed GMA OA(24, 223141, 2) in under 10 s, since (again) the array attains the lower bound

A3 = 1/9.

4.2 Further mixed level orthogonal arrays

Creation of an OA(18, 2134, 2) instead of the OA(18, 2133, 2) discussed in the previous section makes

confirmed optimization a lot more difficult, because the GMA A3 = 3.5 is larger than the lower bound 2

from Proposition 1 (the GMA array is known e.g. from Butler 2005). Nevertheless, both Mosek and Gurobi
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find the GMA array in less than 1 s; however, they have difficulties confirming optimality: Mosek needed

about 464 min for confirming optimality of A3, Gurobi still had a gap of more than 50% after about 2525 min

(running with option MIPfocus set to 3 for improving the gap); subsequent optimization of A4 has not been

tried, so that we only know from external sources that the arrays that were found are indeed optimal. The

website by Eendebak and Schoen (2010) lists two non-isomorphic GMA OA(18, 2134), and the two optimizers

found different ones, as can e.g. be seen from comparing their ARFTs or SCFTs (not shown).

Coverage of mixed level arrays of larger strength in existing sources is a little patchy; for example, Eendebak and

Schoen (2010) provided an OA(64, 224181, 3), but did not comment on the existence of arrays with more 2-level

factors. For three and four 2-level factors, such arrays exist with (A4, A5) = (3, 0) or (A4, A5, A6) = (6, 1, 0),

respectively, and our algorithm finds non-regular arrays with these GWLPs after short optimization times

(optimality of A4 confirmed with the bound of Proposition 1). Regular arrays for these two scenarii can be

found with the method published in Kobilinsky et al. (2017); this method does not optimize A4 and finds

arrays with (A4, A5) = (3, 0) and (A4, A5, A6) = (7, 0, 0), respectively (with R package planor).

Larger arrays with strength 2 and far from saturating main effects df can also not be found easily in published

tables; for example, an optimized OA(72, 243241, 2) is neither found on the Eendebak and Schoen (2010)

website nor on the Gupta et al. (2011) website. Grömping (in press) reported on the creation of such an

array by optimizing column selection from an OA(72, 243384161, 2) taken from the Kuhfeld (2009) catalog

of arrays; this array reached (A3, A4) = (0.451, 3.247) and was used for a biotechnological experiment (see

Vasilev et al. 2014). Our algorithm optimizes the initial feasible A3 value fast; the quality of the objective

reached in short time strongly depends on the order of entering the variables for this example. Using Mosek,

entering the level numbers in the order 2,2,2,2,3,4,3 actually enabled the algorithm to reach the globally

optimal A3 = 0.074 (as confirmed by the lower bound of Proposition 1) within less than a minute; many

other orderings of level numbers led to A3 values that were at least slightly worse than that of the design

used in Vasilev at al. (2014). Optimization of the A4 value was attempted, but to no avail (A4 = 221/54 was

not reduced), and it is unknown to us whether the A4 value is optimal or not.

The remaining three example arrays of this section are related to experimentation with optimizer options

from the development phase of R package DoE.MIParray: an OA(128, 2243, 4), and OA(96, 223142, 3) and

an OA(48, 223142, 2). The factors to be considered were MIQCPMethod (2-level), MIPFocus (2-level) and

Heuristics (4-level) for Gurobi parameters, and scenario (initially 4-level, later 3-level; different level patterns)

and runsize (4-level, tiny to large with resulting numbers depending on the level pattern) for the experimental

situation. A resolution V array for the initial level pattern requires 128 runs. It was created using Gurobi and

Mosek, and creation was very fast, because its A5 equals the lower bound 1. The array obtained from Gurobi

was slightly better than that obtained using Mosek in terms of its SCFT5. An array like this could also have

been taken from the Eendebak and Schoen website (2010), which lists ten non-isomorphic GMA arrays, or

could have been produced by the algorithm of Kobilinsky et al. (2017) (regular array without optimizing A5,
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but also yielding the optimum A5 = 1 in this case).

After further consideration, it was decided to drop one of the scenarii, because prior experimentation suggested

that it would likely add substantial run time with only little information. For the resulting experimental

situation, with factors at 2, 2, 3, 4, 4 levels, a resolution V array smaller than the 192 run full factorial is not

possible (which follows from the fact that the least common multiple of 2 · 2 · 4 · 4 = 64 and 2 · 3 · 4 · 4 = 96 is

192). Since 192 runs were considered too many, a resolution IV half fraction in 96 runs was considered. The

optimized array turned out to have an A4 value of 1/9; this was considered acceptable, since follow-up runs

could be used if deemed necessary for resolving potential ambiguities. This array was easily obtained both by

Gurobi and by Mosek. Again, the array created by Gurobi had a slightly better SCFT than the one created by

Mosek; this array was therefore used for experimentation. An array like this is not available on the website

by Eendebak and Schoen (2010), which does not cover any 96 run arrays with resolution III or IV.

Had one been prepared to contend with resolution III (not very sensible in the software development situation

at hand), 48 runs would have done the job. That array is much harder to optimize than the 96 run array.

Mosek found the GMA A3 = 2/9 (equal to the bound of Proposition 1) in about 45 seconds. Optimizing

A4 did not improve the initial value 2.333, although a better A4 exists. Playing with the ordering of

factor levels, it turned out that the order 4,3,2,2,4 yielded a better array faster: after less than 20 seconds,

(A3, A4, A5) = (2/9, 17/9, 8/9) was reached. This level ordering was also beneficial for the speed of Gurobi’s

optimization, which improved from about 190 seconds (and only when omitting the restriction to binary

variables) to less than 10 seconds; however, for Gurobi the A4 value obtained under that level ordering was

worse (23/9 instead of 20/9, both worse than the 17/9 reached by Mosek under the beneficial level ordering);

instead, the level ordering 4,3,2,4,2 led to the same GWLP that was reached by Mosek, however in about

6 min. As the website by Eendebak and Schoen (2010) does not cover the situation for this array, it is not

known to us whether this GWLP is optimal or whether its A4 can be improved. The arrays found by Mosek

and Gurobi differ in their ARFTs (Mosek slightly better) and SCFTs; following the recommendations from

Grömping (2017), the array produced by Mosek is therefore (slightly) preferable.

4.3 (Supersaturated) Resolution II arrays

Besides orthogonal arrays, our algorithm can also produce (balanced) resolution II arrays that are not as

widely used and published as orthogonal arrays. Several of the examples of Table 2 are of that nature.

Balanced supersaturated arrays are special cases of such resolution II arrays, and Proposition 2 provided a

lower bound for their A2. Some sources provide supersaturated arrays (SSDs) with many more main effects

df than there are experimental runs; we refrain from discussing the chances and risks of using SSDs and refer

readers to Georgiou (2014) for such a discussion. Our algorithm is not suitable for the creation of arrays

whose full factorials would be extremely large; smaller supersaturated arrays can, however, be successfully
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optimized with the help of our algorithm, since optimization of the sum or expectation of χ2 (see also Section

2.3) is equivalent to optimization of A2.

For example, Liu and Liu (2012) provided a weak equidistant BA(12, 2933, 1); they did not explicitly optimize

A2; however, the array’s A2 = 2.8333333 is close to the lower bound 2.7291667 for A2. A different array with

the same A2 and the same ARFT2 and SCFT2 (and slightly better SCFT3) was obtained with our algorithm

using Mosek (the algorithm was run with a time limit of one hour; an approximately 45 min presolve step

was followed by brief improvements). For a related array reported by Liu and Liu with an additional 6-level

factor, our computer was not capable of accommodating the resource requirements by our algorithm; the

same is true for most other arrays provided in Liu and Liu (2012).

There are many smaller mixed level situations, for which a specific supersaturated array for the requirement at

hand is not readily available. If a saturated OA can be found, a subset of its runs and columns can sometimes

be used (see Xu 2015). An SSD for mixed level situations can also be constructed from the website by Gupta

et al., using the limited listing of balanced mixed level SSDs that they provide; however, the result will

generally not be optimal itself. For example, Gupta et al. (2011) list a BA(12, 211121, 1), which can be used

for creating a BA(12, 293141, 1). The lower bounds for the A2 of a BA(12, 293141, 1) are 1 (Proposition 1)

or 1.9097222 (Proposition 2, already sharpened), respectively. Creation by optimizing the selected 2-level

columns from the array on the website and allocating a full factorial in a 3-level and a 4-level factor to the

12-level factor yields A3 = 3.333; our algorithm created an array with A2 = 2 reasonably fast (under 10 min

with Mosek), i.e. was quite competitive for this small mixed level SSD, even though optimality of the array

has not been proven.

5 Discussion

Mixed integer optimization can provide confirmed GMA arrays for small problems. For medium size problems,

we have seen that it is often possible to obtain a confirmed optimum for the shortest word length AR; this

happens, whenever the GMA word length attains the lower bound provided in Proposition 1. It is then

possible to further optimize the second shortest word length; however, for word lengths other than the

shortest, there is generally no lower bound different from zero, so that it is usually necessary to confirm

optimality by reducing the gap to zero, which is often infeasible, as was e.g. seen in the 72 or 48 run examples

(Section 4.2), where it remains an open question whether or not A4 is optimal.

Obtaining optimized arrays by mixed integer optimization is particularly interesting for mixed level experi-

mentation, in case published arrays do not cover the experimentation needs. Our algorithm is most useful, if

the next larger strength is almost but not quite in reach. For such situations, a best available array is often

not catalogued, and it is not unlikely that the lower bound of Proposition 1 is attained by the GMA AR.
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Good arrays without optimality confirmation can also be obtained for small supersaturated situations.

Conic quadratic mixed integer optimization is notoriously difficult. Besides playing with optimizer options

(especially for Gurobi), the examples showed that the order in which the level numbers are provided to the

optimizer can have a strong influence on success or failure of the optimization, and it is certainly worthwhile

to play with that order in case of difficult optimization tasks. Current state-of-the-art optimizers continue to

be actively developed; the speed and success chances of our algorithm may benefit from these developments,

e.g. with coming versions of Mosek or Gurobi.

The supersaturated example from Liu and Liu (2012) showed that weak equidistance coincided with a good

ARFT2 and SCFT2. Thus, it might be of interest to optimize these for mixed level supersaturated arrays.

Most arrays yielded by our algorithm showed very reasonable ARFTR and SCFTR behavior. It would be of

interest to investigate whether the algorithm’s ability of yielding such useful behavior can be systematized,

over and above the current haphazard way of simply leaving the outcome to luck. This would be particularly

useful for supersaturated designs, for which the worst-case confounding between two factors is particularly

detrimental.
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