
 Fachbereich II – Mathematik - Physik - Chemie 

  
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 

01/2020 
 
 

Ulrike Grömping 

Model-Agnostic Effects Plots for Interpreting 
Machine Learning Models 

Modell-agnostische Effektdiagramme zur Interpretation 
maschinell gelernter Modelle (englischsprachig) 

Reports in Mathematics, Physics and Chemistry  

Berichte aus der Mathematik, Physik und Chemie 

 

ISSN (print): 2190-3913 

ISSN (online): tbd 



Reports in Mathematics, Physics and Chemistry  

Berichte aus der Mathematik, Physik und Chemie  
 
The reports are freely available via the Internet: 
http://www1.beuth-hochschule.de/FB_II/reports/welcome.htm 
 
 
 
 
 
 
01/2020,  March 2020 
 
© 2020 Ulrike Grömping 

Model-Agnostic Effects Plots for Interpreting Machine Learning Models 

Modell-agnostische Effektdiagramme zur Interpretation maschinell gelernter 
Modelle (englischsprachig) 
 
 
 
 

 
 

Editorial notice / Impressum 
 
 
Published by / Herausgeber: 
Fachbereich II  
Beuth Hochschule für Technik Berlin 
Luxemburger Str. 10 
D-13353 Berlin 
Internet: http://public.beuth-hochschule.de/FB_II/
E-Mail: fbiireports@beuth-hochschule.de
 
 
Responsibility for the content rests with the author(s) of the reports. 
Die inhaltliche Verantwortung liegt bei den Autor/inn/en der Berichte. 
 
ISSN (print): 2190-3913 
ISSN (online): tbd 



Model-Agnostic Effects Plots for
Interpreting Machine Learning Models

Ulrike Grömping

18 March 2020

Abstract

Partial dependence (PD) plots are an established tool for visualizing main effects from general black box
models. In recent years they have been supplemented with individual conditional expectation plots (ICE
plots). Furthermore, they have been fundamentally criticized as being invalid for correlated features,
and average local effects plots (ALE plots) have been proposed as a remedy. This paper discusses the
properties of PD plots, ICE plots and ALE plots both in terms of their estimands for linear models with
interactions and in terms of their performance for nonparametric models that do not extrapolate well. A
stratified PD plot is introduced, which is particularly useful for the visualization of interactions between
correlated features. Recommendations for the use of model-agnostic effects plots are given, with special
emphasis to nonparametric machine learning models.

1 Introduction

The use of black box machine learning models has generated a demand for tools that aid in achieving at
least post-hoc interpretability. “Interpretable Machine Learning” (IML) is en vogue. A recent book by
Molnar (2019) provides an overview over the tools that have been proposed for this purpose. Molnar’s
book focuses on model-agnostic methods, i.e. methods that can be applied to any model that can predict
an outcome based on a vector of inputs.

This paper investigates model-agnostic effect plots (MAEPs). It focuses on MAEPs for tabular data:
partial dependence (PD) plots (Friedman 2001) with individual conditional expectation (ICE) plots
(Goldstein, Kapelner, Bleich and Pitkin 2015; these are sometimes also called Ceteris Paribus Profiles
or What-If plots, see Biecek 2018) and average local effects (ALE) plots (Apley and Zhu 2019, initially
proposed in earlier version of that report by Apley alone). Although they have only been published in a
technical report, ALE plots are included, because they have been positively received in applied literature
and software. For example, Molnar (2019) states in his Chapter 5.3.5: “All in all, in most situations
I would prefer ALE plots over PDPs [PD plots, UG], because features are usually correlated to some
extent.” At this point, it should be mentioned that the machine learning community denotes as “features”
what the statistical community calls “regressors” or “explanatory variables”. This term will also be used
in this paper.

There is a substantial body of literature on effect estimation and effects plots in linear models, generalized
linear models or yet more general but still at least semi-parametric models. Lenth (2016) or Fox and
Weisberg (2018) present modern implementations and overviews of historical developments. The MAEPs
discussed in this paper cannot draw on assumptions regarding model structure, which implies that the
established methods are not directly applicable. Besides exploring the properties of main effect MAEPs,
this paper will also exploit the findings for proposing an interaction MAEP, called stratified PD plot,
that is similar in spirit to the usual interaction plots for parametric models: it is based on stratified main
effects ICE plots and PD plots, and it can be approximated by using ALE plots for resampled data, if
computing resources are an issue. The proposed stratified PD plot is not only suitable as an interaction
plot, but can also reduce distortions in the PD main effect plot, if the feature under investigation is
strongly correlated to other features.
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Why are PD plots criticized in case of correlated features? Calculation of a PD plot requires predictions
from the Cartesian product of the feature values of the feature of interest with all feature value combinations
from other features. Correlated features imply that parts of the resulting combinations belong to empty
or very sparsely populated parts of the feature space. Molnar emphasizes the inadequacy of obtaining
predictions for unlikely or even impossible feature combinations, like a person of height 2m with weight
less than 50kg. Apley and Zhu (2019) voice a related (and from this author’s point of view, more
important) issue that may also occur for perfectly meaningful feature combinations: a nonparametric
model that has been trained on heavily correlated data will have difficulties providing valid predictions for
parts of the feature space that did not occur in the training data, i.e., it does not extrapolate well; most
machine learning models are nonparametric and are thus affected by this weakness. (Semi-)Parametric
models, on the other hand, can also draw on model structure and can thus extrapolate much more safely;
nevertheless, as is e.g. known for linear models with multicollinear features, they can also be unable to
distinguish between competing prediction models that may lead to quite different predictions in (almost)
empty parts of the feature space. PD plots are averages; they may include some very poor predictions in
such problematic situations. This and further aspects of method comparison will be discussed in more
depth in this paper. The goal is to develop an understanding of the meanings of the different MAEPs in
such situations, and to disentangle different aspects of usability for the MAEPs that have been somewhat
mixed up in the discussion.

This paper discusses the MAEPs, using their estimands for the simplest possible interesting regression
model, a normal linear model with main effects and interaction effect of two quantitative regressors, as a
vehicle for demonstrating the conceptual properties of different MAEPs, when applied to models that
extrapolate well (e.g. correctly specified “true” parametric models). With simulated data from the same
simple model, it is also inspected how the MAEPs behave for nonparametric models that fit the true model
well only locally – random forest models are used for that purpose. Attention is initially restricted to main
effects plots, in full awareness that these are not the recommended type of visualization in the presence
of an interaction. This approach has been chosen, because main effects plots are usually the first step of
a more detailed analysis, and their results must therefore be sensible even in the presence of interactions;
furthermore, main effects plots are the simplest cases for demonstrating generally valid properties of
the MAEPs. The advantages and disadvantages of the different MAEPs will be conceptually discussed,
and recommendations for adequate effect visualization will be given. This includes a new proposal for
visualizing interactions between heavily correlated features using the afore-mentioned stratified PD curves,
possibly accompanied by main effects ICE curves.

Section 2 presents notation and the linear model with interaction that will be used for inspecting the
MAEPs. Section 3 presents the different MAEPs and provides their estimands both for the correctly-
specified and a misspecified linear model; the section concludes with conceptual comparisons for the
linear model case. Section 4 inspects MAEP performance for nonparametric (random forest) prediction
models and introduces the stratified PD plot. Section 5 exemplifies the MAEPs for a data set on fuel
consumption of different car models, and illustrates the findings of Sections 3 and 4. Section 6 discusses
the roles of training data and MAEP generating data, which need not necessarily be the same; this section
also introduces the afore-mentioned resampling-based ALE curve approximation for – possibly stratified
– PD curves. The final discussion summarizes the findings and gives recommendations for use of MAEPs,
especially with respect to nonparametric prediction models.

2 Notation, and the model for generating training data

We consider a true but unknown property of a phenomenon of interest, for example the expected value
f(X1, . . . , Xp) = E(Y |X1, . . . , Xp) of a response Y given the features Xj , j = 1 . . . p. Furthermore, for a
selected feature Xs of interest with the other p− 1 features collected in XC−s , let f̂(Xs, XC−s) denote the
corresponding estimated prediction function. For simplicity, this paper focuses on a single quantitative
feature Xs; general considerations remain valid without that constraint.

MAEPs will be inspected on data that have been generated from a linear model with two normally-
distributed regressors and their interaction, i.e.

f(X1, X2) = E(Y |X1, X2) = β0 + β1X1 + β2X2 + β3X1X2, (1)
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where the feature distribution is(
X1
X2

)
∼ N

((
µ1
µ2

)
,

(
σ11 σ12
σ12 σ22

))
=: N (µ,Σ) , (2)

and there is an independent normal additive error term so that Y |X1 = x1, X2 = x2 ∼ N(f(x1, x2), σ2
ε ).

The covariance element σ12 = ρ12
√
σ11σ22 in (2) makes the problem easy or difficult: if σ12 = 0, the

two regressors vary independently, and different methods lead to comparable results. The larger the
correlation ρ12, the larger the parts of the feature space for which there are no or very few data.

Throughout the paper, Model (1) with feature distribution (2) will be exemplified with parameters (3):

β0 = 200, β1 = 1, β2 = −0.5, β3 = 0.1
µ1 = 10, µ2 = 50, σ11 = 4, σ22 = 25, ρ12 ∈ {−0.9, 0, 0.9}
σ2
ε = 4.

(3)

The true model f(x1, x2) can be completely visualized: Figure 1 shows f(x1, x2) with overlaid contours
of the feature distributions for the three different correlations. Clearly, the information in the corners of
the feature space is poorer than in the center; for the two correlated cases, there is a substantial lack of
information on the relation between the response and the features in two diagonally opposite corners of
the feature space. This will affect prediction quality of nonparametric prediction models (see Section 4).
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Figure 1: The true model (1) for E(Y |X1, X2) with overplotted contours of the bivariate feature
distribution (2) using parameters (3)

When fitting a linear model without interaction (i.e. with β̃3 = 0) to data from Model (1) with features
from (2) and parameters (3), the “true” slopes for that misspecified model will be

β̃1 = β1 + β3µ2 = 6 and β̃2 = β2 + β3µ1 = 0.5, (4)

with a correlation-dependent constant and an inflated error variance (see the appendix for the derivation
of β̃2).

Using simulation parameters from (3), 2000 units each have been simulated for the true model depicted
in Figure 1, by obtaining 2000 independent samples of the bivariate normal feature distribution (2) and
obtaining realizations of Y by adding independent normal random errors with variance σ2

ε = 4 to formula
(1).

Figure 2 depicts a classical main effects plot for x2 (averaged over x1) for correctly-specified linear models
in each of the three simulated data sets. Note that the plots have very narrow confidence bands, because
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Figure 2: Classical main effects plot for x2 for Model (1) with parameters from (2) (from left to right:
ρ12 = −0.9, ρ12 = 0, ρ12 = 0.9). Dashed lines: Point wise 99 percent confidence bands. The figure has
been produced with R package effects by Fox and Weisberg (2018).
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Figure 3: Classical predictor effects plot for x2 for Model (1) with parameters from (2) (ρ12 = −0.9).
Dashed lines: Point wise 99 percent confidence bands. The figure has been produced with R package
effects by Fox and Weisberg (2018).
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of the small error variance. Furthermore, note that the slopes for x2 in Figure 2 estimate the slope β̃2
from (4). In the presence of interactions, it is well-known that main effects plots like those from Figure 2
yield an incomplete picture. Figure 3 provides what Fox and Weisberg (2018) call a predictor effects plot
(shown for ρ12 = −0.9 only, the other two look similar). It gives a more realistic picture of the effect of
x2 on y for the left-hand side plot of Figure 2.

3 Model-agnostic effects plots and their estimands

This section explains each MAEP and inspects its main effect estimands for the correctly-specified linear
model (1) and for the misspecified linear model that omits the interaction effect (β̃3 = 0 enforced by not
including the interaction term, see (4)). All MAEPs are discussed in terms of their estimands for the
feature X2 (the weaker of the two features). The MAEPs are calculated and visualized based on the
simulated training data. Section 6 will discuss the implications of using separate MAEP generating data
instead of the training data.

The most important message from a main effect MAEP lies in the changes between different values of xs;
the overall level (i.e. the average response) is of less interest. ALE plots do not even provide a meaningful
level. Therefore, it is not surprising that different software tools choose different overall levels for the
MAEPs (approximately zero for both PD plot and ALE plot in package ALEPlot by Apley, level for
PD curve taken as the average of the ICE curves in package ICEbox by Goldstein et al.; the latter
coincides with the parametric main effects plot obtained from R package effects by Fox and Weisberg
2018). For supporting comparison of different curves in the same figure, this paper shifts the overall
average of all MAEPs within the same figure either to the average response (which is very close to the
average prediction for all models), or to the PD curve average, whenever ICE curves are involved.

3.1 The most naïve analysis approach, and M plots

For initial inspection, many researchers look at simple scatter plots of Y versus each individual feature. If
a curve is fitted to those scatter plots, it models E(Y |X1 = x1) for the y against x1 plot and E(Y |X2 = x2)
for the y against x2 plot, respectively. For calculating these conditional expectations, the conditional
expectations of X1 given X2 = x2 and vice versa are needed:

E(X1|X2 = x2) = µ1 + σ12

σ22
(x2 − µ2), E(X2|X1 = x1) = µ2 + σ12

σ11
(x1 − µ1). (5)

These formulae will also be important for obtaining the estimands of ALE plots.

Combining Equations (1), (2) and (5), the conditional expectation of Y given X2 can be obtained as

M(x2) = E(Y |X2 = x2) =β0 + β1µ1 − β1
σ12

σ22
µ2

+ (β2 + β1
σ12

σ22
+ β3µ1 − β3

σ12

σ22
µ2)x2

+ β3
σ12

σ22
x2

2.

(6)

Figure 4 shows scatter plots of y against x2 from the three simulated data sets for Model (1), with M(x2)
added as line.

Plots like those in Figure 4, showing a curve based on the scatter of model predictions f̂(xi;s, xi,C−s)
(instead of the yi shown in Figure 4) versus xi;s, have been called M plots by Apley and Zhu (2019). If f̂
provides a consistent estimate for E(Y |X1, X2) in Model (1), Equation (6) gives the estimand for the M
plot for x2. For the misspecified linear model without the interaction, the M plot estimand can also be
obtained from (6), by using the modified slopes from (4) with β̃3 = 0 and an appropriately modified β̃0.

Friedman (2001) already criticized M plots (his formula (56)), because the effect of correlated features
from XC−s is reflected in M(xs): the summand β1σ12/σ22x2 in (6) indicates that the M plot slope
depends on the slope of a correlated regressor, even if the model does not contain an interaction. This
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author is not aware of any scientific recommendation in favor of the use of M plots. They are included
here (and in Section 3.4) as a reference for an unsuitable tool. Nevertheless, it is of course adequate to
inspect bivariate scatter plots with fitted lines, as long as one is aware of their limitations.
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Figure 4: Model (1): Scatter plots of yi versus x i2 with M plot estimands (line)

3.2 PD plots and ICE curves

PD plots were introduced in (2001) by Friedman, ICE curves add further detail to PD plots and were
introduced by Goldstein et al. (2015). As PD plots can be derived as averages over ICE curves, ICE
curves are discussed first. With the prediction function f̂ , the ICE curve for a selected feature Xs on a
particular unit i is given as

ICEi(xs|XC−s = xi;C−s) = f̂(xs, xi;C−s), (7)

where xi;C−s indicates the realization of the remaining features for the ith unit. For Model (1), the
expected individual ICE curves for x2 are

ICEi(x2|X1 = xi1) = (β0 + β1xi1) + (β2 + β3xi1)x2, (8)

and the actual curves use estimated coefficients β̂j instead of unknown true ones. Note that ICE curves
simply vary a specific feature (or in general a selection of two or even more features) over its entire range,
fixing all other features at their actual value. As was mentioned in the introduction, this might create
impossible combinations, like a 6-year-old child of height 193cm, which must of course be regarded with
suspicion and is exactly Molnar’s criticism of using PD curves in case of correlated features. This aspect is
related to the extrapolation problem that was discussed in the introduction and will be further inspected
in Section 4.3.

A PD plot is simply the average of all ICE curves. Its estimand is thus the expectation over XC−s in
formula (7) in general or (8) for Model (1), where

PD(x2) = (β0 + β1µ1) + (β2 + β3µ1)x2. (9)

This estimand does not at all depend on the correlation between features. For the parameters of (3), (9)
becomes PD(x2) = 210 + 0.5x2. Note that the slope coincides with that of the misspecified linear model
(β̃2 of (4)), and the PD curve estimand is identical for the correct and the misspecified model.

Figure 5 shows PD curves with ICE curves for the correct and misspecified linear models on the simulated
data with ρ12 = −0.9. ALE curves (see next section) are also included. Both PD curves and ALE curves
coincide almost perfectly with their estimands.

3.3 ALE plots

Apley and Zhu (2019) introduced ALE plots, with the goal to avoid the perceived disadvantages of both
PD plots and M plots: the idea is to work with conditioning on Xs = xs – like for M plots – but for the
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Figure 5: PD plots with random selection of ICE curves for the correct and misspecified linear models (data
for ρ = −0.9). Grey: PD. Black: ALE. Solid: estimated curve, Dotted: estimand. Points: (xi2, f̂(xi1, xi2))
for the sampled ICE curves.

derivative of f̂ instead of f̂ itself. By subsequently integrating over the local changes measured by the
derivative, one gets a change path over the entire range of xs values, without having to obtain predictions
from impossible combinations.

In formula terms, the derivative of the ALE function (with respect to its argument xs) is given as

ALE′(xs) = EXC−s |Xs=xs

(
∂f̂(Xs, XC−s)

∂Xs

∣∣∣∣∣Xs = xs

)
. (10)

This is then integrated (or, in estimation version, summed from left to right) for obtaining the ALE
function itself. Note that this implies a limitation of ALE plots for nominal predictor variables: Categories
must be ordered, in order to make “from left to right” meaningful.

For Model (1), the derivative with respect to Xs = X2 is β2 + β3X1. The conditional expectation of this
derivative given Xs = X2 = x2 = xs can be obtained in a straightforward way using Equation (5):

ALE′(x2) = β2 + β3µ1 −
β3σ12

σ22
µ2 + β3σ12

σ22
x2. (11)

Integrating this function yields the ALE estimand for x2 in Model (1) as

ALE(x2) = const +
(
β2 + β3

(
µ1 −

σ12

σ22
µ2

))
x2 + β3

σ12

2σ22
x2

2. (12)

For the parameter settings (3), this yields the estimands ALE(x2) = const + 2.3x2 − 0.018x2
2 for

ρ12 = −0.9, ALE(x2) = const + 0.5x2 for ρ12 = 0 or ALE(x2) = const− 1.3x2 + 0.018x2
2 for ρ12 = 0.9.

An ALE plot for the correct linear model estimates these, as can be seen from Figure 5 for ρ12 = −0.9.
The estimand for an ALE plot of the misspecified linear model can be obtained from (12) by replacing
β2 with β̃2 from (4) and β3 with zero, i.e. the constant in the ALE estimand for the misspecified linear
model can be chosen such that ALE and PD estimand coincide.

Equation (12) gives the estimand for the ALE curve, which has been obtained by integrating an expected
derivative. Apley and Zhu (2019, and Apley’s R package ALEPlot) estimate an ALE curve by

1. subdividing the range of Xs into intervals driven by percentiles,
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2. for an interval I =]xlower, xupper], taking differences f̂(xupper, xiC−s)− f̂(xlower, xiC−s) for all units
with xis ∈ I, and averaging these (averaging differences over the interval corresponds to estimating
the slope within the interval as the average difference quotient),

3. obtaining provisional ALE curve values at interval borders as sums of all differences from left to
right (starting with an arbitrary value at the minimum xs value)

4. centering the provisional ALE curve values for obtaining a final version.

Apley and Zhu (2019, Chapter 3) describe the process more formally. With this process in mind, Figure 5
illustrates the reason behind the curvature of the ALE plot in the model with interaction: the local slopes
for units with smaller x2 values are steeper than those for units with larger x2 values; as the ALE plot
integrates (sums from left to right) over those local slopes, the outcome is a curve. It will be discussed in
Section 3.4, whether or not this curvature is desirable behavior for a main effect MAEP.

3.4 Summary of conceptual comparisons

The discussion refers to equations (6) for the M plot estimand (as a reference for an unsuitable tool), (9)
for the PD plot estimand and (12) for the ALE plot estimand.

Correlation with unplotted features that do not interact with plotted features: For M plots, the estimand
heavily reflects influences from correlated features (see Equation (6)), and only some of these disappear
in the absence of interactions (β3 = 0). This is the reason, why M plots are universally rejected as tools
for effect assessment (by Friedman 2001, formula (56), not yet called M plots; and also by Apley and Zhu
2019 or Molnar 2019). For both PD plots and ALE plots, non-interacting uncorrelated features do not
affect the estimand: Equations (9) and (12) yield slope β2 in the absence of the interaction (β3 = 0).

Interactions with unplotted uncorrelated features: PD plots and ALE plots (and even M plots) show the
same reasonable behavior, as can be seen by eliminating all summands involving σ12 from Equations (6),
(12) and (9): they average over the uncorrelated interacting variable. As a result, the main effect MAEPs
are linear with modified slope: β2 is modified into β̃2 = β2 + β3µ1, i.e. exactly into the respective slope
from a misspecified linear model without the intercept (see (4)).

Interactions with unplotted correlated features: PD plot estimands behave exactly like for interactions
with unplotted uncorrelated features: the PD plot estimand does not contain any expression that depends
on the correlation. Interaction with an unplotted correlated feature affects M plots similarly to ALE
plots (in addition to the M plots’ aforementioned inadequate behavior for unplotted correlated features
in general that is unrelated to interactions): both receive an identical contribution −β3σ12x2/σ22 for
the linear part, and both receive a quadratic contribution, with that for ALE being half that for M
(β3σ12x2

2/(2σ22) for ALE). The ALE plot main effect estimand thus contains correlation-driven portions
of the interaction term, which is quite counter-intuitive and in the same league as the heavily criticized
M plot behavior. Apley and Zhu (2019) already note this behavior and defend it, stating that one should
not expect interaction with an unplotted correlated feature to stay out of the main effect. This author
considers this reasoning flawed; it could be applied with the same right to M plots and their way of
incorporating main effect contributions of an unplotted correlated feature. Thus, ALE plots have the
same conceptual problems for the estimation of local changes that M plots have for the estimation of
the function itself. Hence, whenever both correlations and interactions must be considered somewhat
important, ALE plots are conceptually flawed.

Apley and Zhu (2019) and Molnar (2019) emphasize that ALE plots are “unbiased”. Only Apley and Zhu
(2019) detail what is meant by this claim: For additive f̂ regardless of correlation, and for multiplicative f̂
with uncorrelated features, the decomposition of f̂ into contributions from individual features is correctly
recovered. Apley references Hastie, Tibshirani and Friedman (2009, chapter 10.13), according to whom
this property holds even more generally for PD curves, which have the corresponding unbiasedness
property even for purely multiplicative f̂ regardless of correlation. This result is responsible for main
effects PD plots acting reasonably on a linear model f̂ that includes an interaction with a correlated
feature (while the ALE plot estimand contains an inadequate quadratic portion that arises from the
interaction term). The unbiasedness claim is correct for a purely additive or a purely multiplicative
estimated f̂ .

Because of the above-mentioned conceptual flaws of M plots and ALE plots, PD plots are the only
conceptually convincing MAEP. Remember that all considerations in this section worked under data
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generated from a linear model that were also modeled as such. If a nonparametric model is used for which
predictions outside the region of high feature density do not follow the underlying model well, MAEPs
may behave quite differently. In particular, the above-mentioned unbiasedness claims may go wrong, even
if they would apply for the true underlying model. The next section will study this case.

4 MAEP performance for nonparametric prediction models

MAEPs – as opposed to classical effects plots – are applied mainly for nonparametric prediction models.
This section will inspect their behavior for two random forest models in comparison to the parametric
models that were already considered. In the parametric models, the empirical MAEPs almost perfectly
coincided with their estimands (formulae (6), (9) and (12)), because the estimated prediction function
f̂ was very close to the true f . For the nonparametric models of this section, differences between the
actual MAEPs for the simulated data and the reference estimands arise from deviations between the
nonparametric f̂ and the true f . As the paper deals with describing the fitted prediction models and not
with assessing prediction accuracy, and as there has been now extensive model building, it is sufficient to
discuss goodness of fit in terms of the R2 values obtained from the training data.

4.1 The four prediction models

The following prediction models are considered:

1. The correctly specified linear model (Equation (1)) with coefficient estimands as given in (3) yields
the prediction function f̂lin. For the simulated data, the model has R2 values 96.2% for ρ12 = −0.9,
97.5% for ρ12 = 0 and 98.2% for ρ12 = 0.9.

2. A linear model without interaction effect yields the prediction function f̂lin;misspec. For the simulated
data, the model has R2 values 94.4% for ρ12 = −0.9, 96.9% for ρ12 = 0 and 97.2% for ρ12 = 0.9.
Although the interaction is significant in the correctly specified model, its omission only slightly
reduces explained variance, because modification of main effects parameters (see Formula (4) for
coefficient estimands) can largely compensate for the missing interaction term.

3. A random forest with default mtry = 1 (1000 trees) yields the prediction function f̂rf1. For the
simulated data, this forest has R2 values 95.3% for ρ12 = −0.9, 96.7% for ρ12 = 0 and 97.7% for
ρ12 = 0.9. For mtry = 1, individual trees in a forest cannot model interaction, which is why one can
expect the MAEPs from such a forest to be closer to those of the misspecified linear model than to
those of the correctly specified one.

4. A random forest with mtry = 2 (i.e. no random feature selection) yields the prediction function
f̂rf2. For the simulated data, this forest has R2 values 95.3% for ρ12 = −0.9, 96.8% for ρ12 = 0 and
97.7% for ρ12 = 0.9, i.e., R2 values are almost identical to those of f̂rf1.

Not surprisingly, the R2 values from the correctly-specified linear model are better than those from the
other three models, but the difference is not very large.

Figure 6 shows the contours of the predictions overlaid with the contours of the empirical feature
distributions. We see that the correctly-specified linear model, by means of its structure, recovers the
true model of Figure 1 well in the entire feature space, regardless of feature correlation. The misspecified
linear model yields visually relatively similar predictions, but does of course not capture the interaction
effect. The random forests appear to handle densely populated areas better than the empty corners; for
uncorrelated features, the corners and margins are not fitted as well as the center areas of the plot, but
the functional structure is recovered reasonably well. For the correlated features, the forest with mtry = 1
tends to create discrimination along the principal axis of the elliptical bivariate density, i.e. the direction
with most information gets split into different predictions. For the positively correlated features, because
of the nature of the target function, this still works OK. For the negatively correlated features, however,
the prediction function is very poor, since the most informative direction of the data is very different from
the most interesting direction of the underlying model. The forest with mtry = 2 captures the underlying
data-generating model much better, but again misses its details in the empty corners of the feature space.

The substantial difference between prediction models in terms of their ability to extrapolate to unusual
(x1, x2) pairs is not reflected by the reported R2 values, since these are taken from the actual data values
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Table 1: Mean square errors on a grid of feature values

ρ12 = −0.9 ρ12 = 0 ρ12 = 0.9
Linear model (correct) 0.044 0.037 0.448
Linear model (misspecified) 29.316 28.477 29.548
Random forest mtry = 1 336.391 84.123 175.230
Random forest mtry = 2 133.447 31.897 78.229

only, which do not occur in the “would-be-badly-predicted” empty corners. Table 1 quantifies the lack
of prediction quality over the grid of feature values that was used for producing Figure 1, by providing
mean squares of deviations between true and fitted values. We see that the parametric prediction models
fit the data generating model reasonably well everywhere, because they are correctly specified or almost
so. The forests are much worse, especially for mtry = 1. This is due to the forests’ nonparametric nature,
which leads to poor extrapolation abilities: they fit the data well in the regions where training data
feature pairs occur with high probability (see the elliptical contours of the feature distribution in Figure 1
or 6), but reflect the data generating model (1) much worse outside of those regions. Of course, such
inspections can only be made in a simulation, where the true underlying model is known. Both forests fit
the training data approximately equally well; the information in the training data is thus not sufficient to
distinguish between them, although their extrapolation properties are quite different.

4.2 Performance of the MAEPs for the nonparametric models

Figure 7 shows PD and ALE curves with their corresponding estimands from the correctly-specified
linear model; the PD plot estimand is simultaneously the estimand from the misspecified linear model for
both PD and ALE curve. M curves are not shown, since they are clearly not adequate for describing
the contribution of x2 in a model that also contains x1 as a predictor. For the uncorrelated case, all
estimands coincide, and both PD and ALE plots from both forests match these quite well; only for x2
values close to the margins of the x2 range, there are small deviations. For mtry = 1, PD and ALE
curve for the forest with positively correlated features are still similar and seem to achieve a compromise
between PD and ALE estimands from the correct linear model. For the other correlated cases, PD plot
and ALE plot are quite different from each other, and also from their target curves, in particular for the
negative correlation.

We now focus on the particularly messy random forest with negative correlation and mtry = 1. Its
prediction function is depicted in more detail in Figure 8. That figure also shows the PD plot with ICE
curves and an overlaid ALE curve (constant for ALE curve modified such that the mean is the overall
mean of predictions). From Figure 7 we know that neither PD plots nor ALE plots approximate their true
estimands from the correct linear model, which is due to the fact that the prediction model is poor outside
the ellipsoidal region where the training data are most concentrated. With the help of Figure 8, we can
understand the different strategies by which PD and ALE plot depict the role of x2 in the prediction
model:

• The actual data points tend to occur on slightly increasing bits of the ICE curves, i.e. locally around
these locations, there is an increase with respect to x2. Outside of this increasing band, the ICE
curves decrease.

• The PD curve averages over the ICE curves vertically, i.e. for fixed x2 values. This almost completely
eliminates the increasing portions, because these slide through the x2 range and are always a minority
versus decreasing parts on other ICE curves. The overall PD curve is therefore almost flat, with
decreases at the outer areas and a very slight increase in the middle.

• The ALE curve adds up all the local increases in the vicinity of the data points and thus produces
a relatively strong increase in the center area of the x2 range; this increase roughly corresponds to
the PD or ALE curve slope of the underlying data model. Thus, in that center area, the ALE curve
manages to aggregate the model’s local behavior in the vicinity of the data points into something
that resembles the true PD or ALE curve. Outside of that center area, the ALE plot shows a slight
decrease, presumably because there are not enough data points for the ALE plot to maintain its
behavior.
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Figure 7: MAEPs for x2 for the two random forests, applied to data from Model (1). Grey: PD, black:
ALE. Solid: estimated, dotted: estimand under correctly-specified linear model. Background: scatter of
predictions (would extend beyond vertical axis limits).
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Figure 9: Stratified PD plot for the random forest with mtry = 1 and ρ12 = −0.9, with ICE curves: darker
blue=lowest x1 quarter, lighter blue=second x1 quarter, lighter red=third x1 quarter, darker red=highest
x1 quarter.

4.3 Summary of MAEP assessment regarding the model’s extrapolation be-
havior

It is well-known, but nevertheless once more emphasized, that nonparametric models cannot be expected
to work well on unseen feature combinations, even though many models will provide a prediction
uncomplainingly. Because of this problem, ICE curves from nonparametric models for a feature that
strongly correlates with other features will often be meaningless in much of the feature’s range, because
parts of the xs values are not compatible with the unit’s xi,C−s (or have at least never been encountered
in combination in the training data). Whenever this is the case, methods that rely on averaging over
ICE curves will yield distorted results (likely usually towards less pronounced effects). Apley’s and Zhu’s
(2019) reason for proposing ALE plots was that they identified a problematic behavior when applying
PD plots to nonparametric prediction models for feature distributions like (2) with strong positive or
negative correlation for which substantial areas of the Cartesian product of the domain of Xs with the
domain of XC−s are (almost) empty.

It has already been discussed that M plots are easily estimable, because they condition on the variable of
interest and can be estimated well whenever the model produces good predictions for the training data.
The price is that they are conceptually seriously flawed, by including into the effect of a particular feature
influences from all correlated features. We will thus not discuss M plots any further.

Main effect MAEPs are supposed to provide insight into how a specific feature drives the model behavior
over and above what other model features contribute. PD curves average over the distribution of XC−s ,
which is known to provide the full picture only in the absence of strong interactions, even for perfectly
extrapolating models. One might think of limiting the range of xs values to look at, depending on xi;C−s ;
simple averaging of this kind of restricted ICE curves will modify the average curve from a PD curve
towards an M curve; thus, this route cannot be recommended (but see the next sub section). Apley and
Zhu (2019) moved the restricted averaging from the curve itself to its derivative; in the presence of both
interaction and correlation, this also yields a very problematic behavior conceptually (see Section 3.4).
For predictions from nonparametric prediction models, such conceptually flawed behavior of ALE plots
appears to be less pronounced, presumably because the nonparametric prediction model tends to miss
out on the interaction behavior in empty extreme corners (it tends to be flat there). Nevertheless, this
author lacks the confidence that ALE curves always estimate something reasonable.
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Table 2: Correlation among quantitative features of auto mpg data (‘mpg‘ is the response)

mpg cyl displ hp wt accel MY
mpg 1.0000 -0.7776 -0.8051 -0.7784 -0.8322 0.4233 0.5805
cyl -0.7776 1.0000 0.9508 0.8430 0.8975 -0.5047 -0.3456
displ -0.8051 0.9508 1.0000 0.8973 0.9330 -0.5438 -0.3699
hp -0.7784 0.8430 0.8973 1.0000 0.8645 -0.6892 -0.4164
wt -0.8322 0.8975 0.9330 0.8645 1.0000 -0.4168 -0.3091
accel 0.4233 -0.5047 -0.5438 -0.6892 -0.4168 1.0000 0.2903
MY 0.5805 -0.3456 -0.3699 -0.4164 -0.3091 0.2903 1.0000

4.4 Stratified PD curves

ICE curves condition on the entire feature vector of each unit, except for xs, which is varied. Classical
effect plot tools for generalized linear models often condition on features that interact with the feature
under investigation, and average over the other features (see e.g. Figure 3); a related approach can be
implemented for MAEPs by averaging over subsets of ICE curves which are determined via strata w.r.t. a
correlated – and possibly interacting – feature. Figure 9 shows such a stratified PD plot, with PD curves
for x2 created separately for four different ranges of x1 values. The PD curves are drawn only over the
x2 range that occurs in the respective stratum. Such an approach may be useful whenever two features
are strongly correlated, and will be particularly interesting, if there is a relevant amount of interaction
between strongly correlated features. In Figure 9, we see an increase for increasing x2 values, where x1 is
in any of the top three quarters, and a slight decrease for x1 in the bottom quarter.

5 Application to a real world example

We now consider an automotive data set from the UCI Machine Learning repository (Dua and Graeff 2019;
https://archive.ics.uci.edu/ml/datasets/auto+mpg). The response variable is fuel economy in miles per
gallon (mpg). There are 392 observations without missing values (six observations with missings have been
omitted). The data set has seven features for explaining mpg, four of which are quantitative continuous,
two quantitative discrete (number of cylinders and model year) and one nominal with three categories
(origin). There is substantial correlation between quantitative features (see Table 2). Consequently,
variance inflation factors (VIFs) in a linear model with all main effects would be quite large for features
cyl to wt (about 10 to 11), and particularly for the feature displ (about 23).

The response mpg is modeled with a random forest (1000 trees are built, each using mtry = 2 features). In
the absence of knowledge about the true model, target curves for PD plots and ALE plots are of course
unknown. A pair of variables for inspection has been picked from feature importance and interaction
importance outcomes that were calculated with functions featureImp$New and Interaction$new of R
package iml: weight, displacement, model year and horsepower are the most important variables, with
displacement, horsepower and model year featuring strongest in terms of interactions. Displacement and
horsepower is the most interesting pair, as these two are heavily correlated with a strong interaction.
For comparison, a linear model has been hand-crafted, including all main effects plus a few plausible
interaction effects (displacement by horsepower, weight by horsepower, acceleration by model year). The
R2 values are 87.93% for the random forest and 87.55% for the linear model, i.e. the two models have
similar ability to explain the variability in the fuel economy responses (the linear model has been chosen
to include the displacement by horsepower interaction, even though a different linear model would have
produced a better R2; remember the large VIFs that indicate that the information in the data is not
sufficient for distinguishing different linear prediction model variants). Figure 10 shows the linear model
interaction plot for displacement by horsepower, which indicates decreasing fuel economy with higher
displacement for low horsepower and slightly increasing fuel economy with higher displacement for high
horsepower (with a lot of variability around the prediction line). Figure 11 shows the MAEPs for both
the linear model and the random forest. We see that ALE and PD plots are relatively similar, except for
horsepower in the linear model. A likely reason for the larger difference there is that the random forest
ICE curves are flat for extreme value combinations (like, e.g., large horsepower with small displacement),
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while linear model ICE curves reflect large contributions from interactions; predictions for such extreme
value combinations do affect PD plots but do not affect ALE plots, so that the linear model PD curve
differs from the other three curves.
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Figure 10: Classical interaction plot for miles per gallon from a hand-crafted linear model.
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Figure 11: ALE and PD curves from linear model and random forest model. Grey: PD, black: ALE.
Solid: random forest, dashed: linear model. Back ground: scatter of data points (would extend beyond
vertical axis limits).

Figure 12 applies the stratified PD plot (introduced with Figure 9) to this real data example: ICE curves
for displacement are stratified by horsepower quintiles, and the bold lines surrounded by yellow space
show the separately calculated PD curves. The figure reflects a decrease in fuel economy with increasing
displacement, which is steepest for lowest horsepower (dark blue) and quite flat for highest horsepower
(the initial stronger decrease for highest horsepower is not really supported by data). Part (b) of the
figure will be considered in Section 6.2.

6 The role of the data

There are two data sets involved in obtaining a MAEP:
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Figure 12: Stratified PD curves (a) calculated by averaging ICE curves or (b) approximated as ALE curves
from resampled data. Legend: Overall PD curve (black) and separate PD curves for horsepower quintiles
(darkest blue: lowest horsepower, darkest red: highest horsepower, grey: middle quintile). The separate
PD curves are limited to the range of displacement values for the horsepower stratum. Vertical locations
of ALE plot approximations in (b) adjusted to average stratum prediction. Left-hand side: points show
predictions for respective ICE curves. Right-hand side: points show all training data predictions (partly
transparent colors support visibility of overlap).

• The training data are used for creating the prediction function f̂ (which is supposed to estimate
Formula (1) in the simple linear model example of Section 2). If the training data contain highly
correlated features, this affects the quality of that function: multicollinear data imply that quite
different f̂ have almost the same predictions for the training data and thus are indistinguishable
based on training data information. This problem is relevant for linear models and is even more
severe for nonparametric models. Hence, predictions in – sometimes large – parts of the Cartesian
product of the domain of Xs with the set of realizations {xi,C−s , i = 1, . . . , n} can be very poor
(often worse so for nonparametric than for parametric models).

• For creating the MAEP from f̂ , a different data set can be chosen, even though this paper so
far always chose the original training data. These MAEP generating data are responsible for
estimating the feature distribution, which in the simple linear model example of Section 2 amounts
to estimating the conditional expectations (5) and the implied estimands in Equations (6), (9) or
(12).

6.1 Different MAEP generating data

If the MAEP generating data are chosen differently from the training data, these data are used for
estimating the influence of features on f̂ ; the training data feature distribution ((2) for the simple example)
is only indirectly involved by the influence it had on creating f̂ . If the estimated model was a linear
model with two features and an interaction and the new feature distribution can also be described by (2)
with modified parameters µ̇ and Σ̇, the estimands for the MAEPs can be obtained from Equations (6),
(9) or (12), by replacing βj with the estimates β̂j for the prediction model, and µ with µ̇ and Σ with Σ̇
for the feature distribution.

For the choice of MAEP generating data, two aspects are to be considered:

1. What is the feature distribution for which f̂ is to be applied?
2. What is the feature distribution under which f̂ yields valid answers (in terms of an underlying

truth)?

Of course, if the feature distribution for 1. is more general than that for 2., there is a problem, since
application of f̂ will not yield valid answers for all use cases. For the second question, it was already
discussed that a nonparametric machine learning model generally yields f̂ that is only applicable to
sections of the feature space for which there was a sufficient amount of training data. This has direct
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ethical implications (which are well-known and trivial, but nevertheless occasionally overlooked in
naïve enthusiasm about the possibilities opened by machine learning): it can never be expected that a
nonparametric machine learning model arrives at appropriate predictions for units that are exceptional
relative to the body of data on which the algorithm was trained.

6.2 Approximating PD plots by ALE plots from uncorrelated data

Whenever obtaining a prediction requires some effort, calculation of PD plots is much slower than
calculation of ALE plots, because more predictions have to be calculated. ALE plots can be used for
approximating a PD plot with reduced calculation effort: the trick is to use the – possibly replicated
– training data, but with xs values resampled so that existing correlations between Xs and XC−s are
eliminated. This works, because

• the PD plot calculation algorithm for xs gives each combination of xs with xi,C−s to the prediction
model, which emulates independence between Xs and XC−s , even if the training data exhibit strong
correlation.

• the resulting ALE curve does not suffer from the conceptual problem inherent in ALE plots of
including interaction effects between xs and its correlated features into the main effect of xs, because
all such correlations are eliminated by the resampling.

Where features are correlated in the real world, the ALE plot approximation for the PD curve will of
course have to use predictions from less likely feature combinations for which the prediction model may
yield poor predictions; this is unavoidable for approximating a PD curve.

ALE plot approximation can also be applied to stratified PD plots. For the example data, an ALE plot
approximated stratified PD plot for displacement, obtained by separate resampling within strata of the
strongly correlated feature horsepower, is shown in part (b) of Figure 12. The approximation apparently
works quite well for the fuel economy random forest. This may be related to the fact that stratification on
the correlated variable horsepower, because of the strong correlations within an entire group of features,
implicitly includes also a (weaker) stratification on correlated features like cylinders and weight.

7 Discussion

PD plots are an established tool for depicting main effects in nonparametric prediction models, included
e.g. in Hastie et al. (2009). Although they are conceptually more sound than ALE plots for “everywhere”
correctly estimated prediction functions, they suffer from a severe extrapolation problem for nonparametric
models with correlated features, as was highlighted by Apley and Zhu (2019), who proposed ALE plots
as a remedy.

ALE plots have recently received praise in applied literature (e.g. Molnar 2019) and social media and are
implemented in several packages in both R and Python (to name a few, without judgment and without
attempting completeness: R: ALEPlot, iml, DALEX (via auxiliary packages); Python: ALEPython,
Pytalite). Their advantages are calculation speed and avoiding extrapolation; their disadvantage is that
they attribute part of the interaction effect to the main effect if there are interactions between correlated
features. Consequently, ALE interaction plots (which were not discussed in this paper) miss out on those
parts of the interaction effect that were already attributed to main effects in case of correlated features.
ALE plots must be considered as defective, because of the severity of their conceptual problem.

It is recommended to use PD plots in combination with ICE curves, including also points for actual
predictions (see e.g. right-hand side graph in Figure 8). The points help to understand whether there is
a severe extrapolation problem, and whether there are systematic differences between ICE curves that
are likely due to an interaction effect. In case of strong correlations and/or interactions, stratifying PD
curves w.r.t. strongly correlated and/or interacting features can be considered (see Figure 9 for the small
simulated example, and 12 for the fuel economy example). If computing resources for obtaining PD
curves are a limiting factor, Section 6 pointed out how ALE curves can be used as approximations for PD
curves, by emulating uncorrelatedness between xs and the other features through resampling (overall
or stratified). Where one resorts to ALE curves from resampled data as approximation for PD curves,
ICE curves are no longer available; plotting points of (xi;s, f̂(xi;s, xC−s)) still provides the connection
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to the raw predictions (see Figure 12). In the author’s opinion, where feature correlation is high, the
proposed stratified PD plots are preferable to the usual PD interaction plots (which were not discussed in
this paper), because they show much more clearly where curves are supported by data. Even if there are
no interactions, stratification with respect to a correlated feature may pay off, because the feature may
represent a group of correlated features, so that the extrapolation problem of PD curves may be reduced
by the stratification (this has likely been the case in the fuel economy example). However, the cautioning
comments of the following paragraph are also applicable.

Hastie et al. (2009) use very careful wording in advertising PD curves: they justly claim that PD plots
“can help to provide a qualitative description of [the] properties” of f̂ . Furthermore, they caution that
insights can only be expected for xs consisting of at most three features (this author considers three as
already very ambitious), and only for those that involve highly relevant features. Furthermore, they state
that the plots will be most revealing for prediction functions that are additive or multiplicative in nature
(see the unbiasedness discussion in Section 3.4). All these are relevant comments. In addition, users of
PD plots should always make themselves aware of the very local nature of nonparametric prediction
models, particularly in case of correlated features; this awareness can be supported by the proposals of
the previous paragraph.

Finally, it is once more emphasized that nonparametric prediction functions must be used with great
care (or not at all), whenever one needs predictions for objects / situations / people that are exceptional
relative to the body of data on which the model was trained. This well-known and trivial fact is not
always treated with the priority that it deserves.
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Appendix: Proof for Equation (4)

We consider matrices XI = (1n X1 X2) and XII = (X1 · X2), where Xj denotes the one-column
matrix of n realizations of the random variable Xj , and · the element-wise product. Given the actual
matrices X1 and X2, the true parameters in the misspecified model without interaction are: (β0, β1, β2)>+
(XI

>XI)−1XI
>XIIβ3.

1
n

XI
>XII = 1

n

(
n∑
i=1

xi1xi2,

n∑
i=1

xi1
2xi2,

n∑
i=1

xi1xi2
2

)>

converges against(
E(X1X2), E(X1

2X2), E(X1X2
2)
)> =

(
µ1µ2 + σ12, µ1

2µ2 + σ11µ2 + 2σ12µ1, µ1µ2
2 + σ22µ1 + 2σ12µ2

)>
(using a generalization of a result from Isserlis 1918).
1
n

XI
>XI is consistent for a matrix Ω of non-central first and second moments, which can be written as

the sum of the outer product of the vector u = (1, µ1, µ2)> with a singular 3× 3 matrix A whose lower
right block is the covariance matrix Σ from (2) (and all other elements are zeroes). Choosing vectors
v1 = v2 = (0, µ1, µ2)> and w1 = w2 = (1, 0, 0)>, the limit can be written as Ω = A+(v1+w1)(v2+w2)>.
With Theorem 3 of Riedel (1992), its inverse becomes

A+−w2v2
>A+

|w2|2
−A+v1w1

>

|w1|2
+
(
1 + v2

>A+v1
) w2w1

>

|w1|2|w2|2
=

1 + (µ1 µ2)Σ−1
(
µ1
µ2

)
−(µ1 µ2)Σ−1

−Σ−1
(
µ1
µ2

)
Σ−1

 .

Thus, the coefficient vector of the misspecified linear model is consistent forβ̃0
β̃1
β̃2

 =

β0
β1
β2

+

1 + (µ1 µ2)Σ−1
(
µ1
µ2

)
−(µ1 µ2)Σ−1

−Σ−1
(
µ1
µ2

)
Σ−1


 µ1µ2 + σ12
µ1

2µ2 + σ11µ2 + 2σ12µ1
µ1µ2

2 + σ22µ1 + 2σ12µ2

β3. (13)

Now, simple but slightly tedious calculations yield the equalities β̃1 = β1 + µ2β3 and β̃2 = β2 + µ1β3.
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