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A DAE Approach to Control SEIR-ODEs

Diana Estévez Schwarz

April 13, 2020

Abstract

For the current COVID-19 pandemic, well-founded strategies to cope
with the dynamics of the epidemic are urgently needed. Reading [1]-[2]
and re�ecting about higher-index DAEs resulting from control problems,
the author wondered whether this point of view could provide some new
insights for a better understanding of the SEIR-ODEs and at last, for the
design of infection regulating policies. Indeed, the obtained mathematical
results seem to be very plausible and deliver a simple theoretical rule of
thumb to estimate a reproduction number that avoids dangerous peaks
in the infected population. A corresponding simple control strategy for
the SEIR-ODE has been implemented in Python and provides numerical
solutions for a non-increasing infected population.

1 Introduction

1.1 The SEIR Model

The ordinary di�erential equation (ODE) corresponding to the classical infec-
tious disease model SEIR (Susceptible → Exposed → Infected → Removed)
with the notation used in [2] reads:

S′ = − Rt
Tinf

· I · S, (1)

E′ =
Rt
Tinf

· I · S − 1

Tinc
· E, (2)

I ′ =
1

Tinc
· E − 1

Tinf
· I, (3)

R′ =
1

Tinf
· I. (4)

The considered period parameters (in days) are:

� Tinc: Length of incubation period

� Tinf : Duration patient is infectious

The reproduction number or measure of contagiousness Rt is the number of
secondary infections each infected individual produces. We consider:

� a constant Rt = R0 for a constant basic reproduction number,
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Figure 1: Some results for a Rt = 2.2 (top),Rt = 1.3 and a step-wise de�ned Rt
(bottom) function i. In the left images we included the estimate 1

S , cf. Section
1.2. Please notice the di�erent scalings.

� a constant Rt < R0 decreased reproduction number that may result from
speci�c policies such as social distancing,

� a time-dependent Rt(t).

For given positive initial values S0, E0, I0, R0 ful�lling

S0 + E0 + I0 +R0 = 1

the solution of the SEIR-ODE can be computed for constant or time-dependent
Rt(t). In Figure 1 we present some examples for Tinc = 5.20 and Tinf = 2.9,
the default parameters in [2].

In this article, we focus on the estimation of an appropriate Rt(t) allowing
the healthcare system to cope with the corresponding infected population I(t),
cf. [1].
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This problem seems to be analogous to tracking problems. Therefore, in the
following we investigate its mathematical properties from a DAE (di�erential-
algebraic equation) point of view. The obtained results match the expectations.

1.2 Results and Plausible Conclusion

In Sections 2-4, we will compute explicit solutions for Rt, S, E,R if I = i(t) is
prescribed to keep the infectious population at or under a certain level. More-
over, from our analysis and tests we con�rmed that a plausible rule of thumb
to estimate Rt such that for an a�ordable I0 also I remains a�ordable is

Rt(t) ≤ min

{
R0,

1

S

}
.

This implies that estimations of the susceptible population are crucial for re-
viewing the need for restrictions.

Interpreting this results in terms of the equation (2)-(3) is quite simple:

� To ensure I ′ ≤ 0 according to (3)

1

Tinc
· E ≤ 1

Tinf
· I

has to be given.

� If the last inequality is given and Rt(t) ≤ 1
S , then from (2) we obtain

E′ ≤ Rt
Tinf

· I · S − 1

Tinf
· I ≤ 0.

With these properties in mind, in Section 5 we provide a corresponding strat-
egy for controlling Rt directly in the ODE (1)-(4) that has been implemented
in Python and can be used for further numerical experiments.

2 DAE-Formulation

Let us consider

1. the SEIR-ODE with an unknown function Rt(t),

2. a constraint that prescribes the percentage of the infected population I,

leading to the di�erential-algebraic equation (DAE)

S′ = − Rt
Tinf

· I · S, (5)

E′ =
Rt
Tinf

· I · S − 1

Tinc
· E, (6)

I ′ =
1

Tinc
· E − 1

Tinf
· I, (7)

R′ =
1

Tinf
· I, (8)

0 = I − i(t). (9)
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In the DAE, the reproduction number Rt(t) is an unknown function that
will be computed in dependence of the parameters, the initial values and a given
time-dependent function i(t).

From a DAE point of view, (5)-(9) is an index-3 DAE with the following
constraints:

1. We have the explicit contraint (9):

I = i(t). (10)

2. The di�erentiation of (10) together with (7) leads to

i′(t) =
1

Tinc
· E − 1

Tinf
· i(t),

and therefore to the constraint

E = Tinc

(
i′(t) +

1

Tinf
· i(t)

)
. (11)

3. Di�erentiating (11) we obtain

E′ = Tinc

(
i′′(t) +

1

Tinf
· i′(t)

)
,

and, using (6), therefore

Rt
Tinf

· I · S − 1

Tinc
· E = Tinc

(
i′′(t) +

1

Tinf
· i′(t)

)
,

such that we obtain the constraint

Rt
Tinf

· i(t) · S −
(
i′(t) +

1

Tinf
· i(t)

)
= Tinc

(
i′′(t) +

1

Tinf
· i′(t)

)
, (12)

or, more precisely,

Rt · S =
Tinf
i(t)

((
i′(t) +

1

Tinf
· i(t)

)
+ Tinc

(
i′′(t) +

1

Tinf
· i′(t)

))
=: r(t). (13)

In practice Rt will not be larger than the basic reproduction number R0.
Hence, we consider the constraint

Rt = min

{
R0,

r(t)

S

}
. (14)

We emphasize that r(t) depends on i(t), i′(t) and i′′(t), because the DAE-index
was 3. For the function i(t) we will investigate the following special cases:

1. If i(t) = I0 is constant, then r(t) = 1 and

Rt = min

{
R0,

1

S

}
.
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2. If i(t) = I0 e
− t

Tinf or i(t) = I0 e
− t

Tinc , then

Rt · S = 0,

i.e. Rt should be zero since we assume S 6= 0.

3. If
i(t) = I0 e−λ t,

then we have

i′(t) = −λ i(t), i′′(t) = −λi′(t) = λ2i(t)

and therefore for all t:

r(λ) = (Tinc λ− 1) (Tinf λ− 1) .

4. For our tests, we will also consider an oscillating i(t) of the form

i(t) = I0 (1 + a sin (b t)) .

3 Solving an Associated ODE

Due to the constraints (10),(11),(13), the solution of the index-3 DAE (5) -(9)
for a given i(t) can be computed as follows:

1. Compute I and E according to (10),(11). Note that I0 and E0 are �xed
by the contraints at t0.

2. Consider initial values S0 and R0 at t0 ful�lling S0 + R0 + I0 + E0 = 1
and solve the ODE

S′ = −g(t), (15)

R′ =
1

Tinf
· i(t), (16)

for

g(t) :=

(
i′(t) +

1

Tinf
· i(t)

)
+ Tinc

(
i′′(t) +

1

Tinf
· i′(t)

)
=

i(t)

Tinf
r(t).

Since the right-hand side depends on t only, the solution can be obtained
by integration:

S = S0 −
∫ t

t0

g(τ) dτ, (17)

R = R0 +

∫ t

t0

1

Tinf
· i(τ) dτ. (18)

3. Rt results from

Rt =
r(t)

S
=

r(t)

S0 −
∫ t
t0
g(τ) dτ

. (19)
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Note that this result permits an simple representation of the solution if we
assume that i is an exponential function of the form:

i(t) = I0e
−λt.

In this case, equations (11), (17), (19) for t0 = 0 lead to

E(t) = −Tinc
Tinf

(Tinf λ− 1) i(t), (20)

S(t) = S0 −
r(λ)

Tinf λ
(I0 − i(t)) , (21)

R(t) = R0 +
1

Tinf λ
(I0 − i(t)) , (22)

Rt(t) =
r(λ)

S0 − r(λ)
Tinf λ

(I0 − i(t))
. (23)

4 Some Tests for the DAE-Formulation

We tested the following cases for Tinc = 5.20 and Tinf = 2.9:

1. i(t) = I0 = 0.01,

2. i(t) = 0.01e
− 0.01

Tinf
t
,

3. i(t) = 0.01
(
1.+ 0.05 sin

(
2π
21 t
))
. We considered the period 21 days inspired

by regulations of the British government1.

The results can be found in Figure 2. For the numerical solution, the al-
gorithms described in [3] were used. However, the explicit formulas developed
above could also have been used.

For the considered parameters, the results can be interpreted as follows:

1. i(t) = I0 = 0.01 is theoretically possible and easy to estimate,

2. a moderately exponentially decreasing i(t) postpones the time-point at
witch social distancing can end, i.e. Rt = R0,

3. an oscillating i(t) requires a considerably oscillating Rt, whereas the over-
all behavior of S and R results to be similar as for i(t) = I0 = 0.01.

All in all, we recognize that reducing the social distancing measures such that
for Rt

Rt ≤ min

{
R0,

1

S

}
is always given seems to be a desirable goal.

1https://www.legislation.gov.uk/uksi/2020/350/regulation/3/made
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Figure 2: Some results for a constant (top), exponentially decreasing (middle)
and periodic (bottom) function i, c.f. Section 4.
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Figure 3: Some results for 12 and 20 constant and equidistant values of Rt
for the controlled SEIR-ODE obtained with the code from the Appendix. The
similarity to the results obtained in Figure 2 for the exponentially decreasing i
is highly visible.

5 A Control Strategy for the ODE-Formulation

Since in practice Rt will not be a continuous function, in the following we
assume that it is a piecewise constant function, where the constant values may
depend on the social distancing policies. If these constant values are given, then
a control strategy to increase Rt at the time-point at which 1

S is large enough
can be easily be implemented considering the original SEIR-ODE (1)-(4). The
results are presented in Figure 3 and the corresponding Python-Code can be
found in the Appendix.

Of course, in practice the estimation of these constant values for Rt in de-
pendence of social distancing policies and a good estimation of S will be crucial
for the applicability of such a model.

6 Summary

In this article we outlined how a DAE-approach might be helpful for a better
understanding of SEIR-ODEs and estimated an optimal choice of Rt. This
approach should be analogous for more sophisticated models with a realistic
�tting of the parameters. Note that no rigorous bibliographical studies have
been undertaken.
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Appendix

import matplotlib.pyplot as plt

import numpy as np

from scipy.integrate import solve_ivp

def SEIR_controlled(t,y):

#Parameter

Tinc=5.20 # Length of incubation period

Tinf=2.9 # Duration patient is infectious

S=y[0]

E=y[1]

I=y[2]

# R=y[3] not used

f=np.zeros(4)

Rt=compute_Rt(S) # Compute R_t in dependence of S

# SEIR-ODE

f[0] = -Rt/Tinf*I*S

f[1] = +Rt/Tinf*I*S-E/Tinc

f[2] = +E/Tinc-I/Tinf

f[3] = +I/Tinf

return f

def compute_Rt(S):

# compute maximal Rt (for given values Rn) with Rt leq 1/S

R0=2.2 # value without social distancing
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Rt=1.04 # starting value, should be < 1/S0

na=12 # number of adjustments

Rn=np.linspace(Rt,R0,na) # values for Rt

# depending on social distancing, etc.

# It is not necessary to choose Rn equidistant!

for rn in Rn:

if rn < 1/S:

Rt=min(R0,rn)

return Rt

if __name__=="__main__":

##############################################

# Initialization

##############################################

t_span=[0.0,350.0] # time interval in days

I0=0.01

Tinc=5.20 # Length of incubation period

Tinf=2.9 # Duration patient is infectious

E0=I0/Tinf*Tinc # then I'(t_0)=0

R0=0.015

S0=1.0-E0-I0-R0

y0 = np.array( [S0,E0,I0,R0]) # initiall values

##############################################

# Solve initial value problem

##############################################

sol_ivp=solve_ivp(SEIR_controlled,t_span,y0,rtol=1.e-8,atol=1.e-8)

##############################################

# Plot results

##############################################

plt.figure(0)

plt.plot(sol_ivp.t,sol_ivp.y[2,:], 'g', label='I(t)')

plt.plot(sol_ivp.t,sol_ivp.y[1,:], 'b', label='E(t)')

plt.axis([t_span[0],t_span[1], 0., 0.02])

plt.legend(loc='best')
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plt.xlabel('t in days')

plt.ylabel('Relative Population')

plt.figure(1)

plt.plot(sol_ivp.t,sol_ivp.y[0,:], 'b', label='S(t)')

plt.plot(sol_ivp.t,sol_ivp.y[3,:], 'g', label='R(t)')

plt.axis([t_span[0],t_span[1], 0., 1.0])

plt.legend(loc='best')

plt.xlabel('t in days')

plt.ylabel('Relative Population')

plt.figure(2)

# Compute 1/S and R_t for plot

ln=len(sol_ivp.t)

invS=np.zeros(ln)

Rt=np.zeros(ln)

for k in range(ln):

invS[k]=1./sol_ivp.y[0,k]

Rt[k]=compute_Rt(sol_ivp.y[0,k])

plt.plot(sol_ivp.t,invS, 'g', label='1/S(t)')

plt.plot(sol_ivp.t,Rt, 'b', label='Rt(t)')

plt.axis([t_span[0],t_span[1], 0.5, 3.5])

plt.legend(loc='best')

plt.xlabel('t in days')

plt.ylabel('Reproduction number')

#plt.grid()

plt.show()
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