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A DAE Approach to Control SEIR-ODESs

Diana Estévez Schwarz

April 13, 2020

Abstract

For the current COVID-19 pandemic, well-founded strategies to cope
with the dynamics of the epidemic are urgently needed. Reading [1]-|2]
and reflecting about higher-index DAEs resulting from control problems,
the author wondered whether this point of view could provide some new
insights for a better understanding of the SEIR-ODEs and at last, for the
design of infection regulating policies. Indeed, the obtained mathematical
results seem to be very plausible and deliver a simple theoretical rule of
thumb to estimate a reproduction number that avoids dangerous peaks
in the infected population. A corresponding simple control strategy for
the SEIR-ODE has been implemented in Python and provides numerical
solutions for a non-increasing infected population.

1 Introduction

1.1 The SEIR Model

The ordinary differential equation (ODE) corresponding to the classical infec-
tious disease model SEIR (Susceptible — Exposed — Infected — Removed)
with the notation used in [2] reads:

R
U fof-I.S, (1)
o= gt - E, (2)
Enf Tinc
1 1
I = B -1, (3)
Tinc Tznf
1
R = T‘f’I. (4)

The considered period parameters (in days) are:
e T;,.: Length of incubation period
e Ti,¢: Duration patient is infectious

The reproduction number or measure of contagiousness R; is the number of
secondary infections each infected individual produces. We consider:

e a constant R; = Ry for a constant basic reproduction number,
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Figure 1: Some results for a Ry = 2.2 (top),R¢ = 1.3 and a step-wise defined R;
(bottom) function 4. In the left images we included the estimate &, cf. Section
[[:2] Please notice the different scalings.

e a constant R; < R( decreased reproduction number that may result from
specific policies such as social distancing,

e a time-dependent R.(t).
For given positive initial values Sy, Ey, Iy, Ry fulfilling
So+Eo+Ip+Ry=1

the solution of the SEIR-ODE can be computed for constant or time-dependent
R.(t). In Figure [1| we present some examples for Tj,. = 5.20 and T;,; = 2.9,
the default parameters in [2].

In this article, we focus on the estimation of an appropriate R,;(t) allowing
the healthcare system to cope with the corresponding infected population I(¢),

cf. [.



This problem seems to be analogous to tracking problems. Therefore, in the
following we investigate its mathematical properties from a DAE (differential-
algebraic equation) point of view. The obtained results match the expectations.

1.2 Results and Plausible Conclusion

In Sections we will compute explicit solutions for Ry, S, E, R if I = i(t) is
prescribed to keep the infectious population at or under a certain level. More-
over, from our analysis and tests we confirmed that a plausible rule of thumb
to estimate R; such that for an affordable I also I remains affordable is

R:(t) < min {Ro, ;} .

This implies that estimations of the susceptible population are crucial for re-
viewing the need for restrictions.

Interpreting this results in terms of the equation — is quite simple:
e To ensure I’ < 0 according to

has to be given.
o If the last inequality is given and R;(t) < 4, then from (2) we obtain

E’g&.].g_ 1

-1 <0.
T’inf 711'nf o

With these properties in mind, in Section [5]we provide a corresponding strat-
egy for controlling R, directly in the ODE (I)-(4) that has been implemented
in Python and can be used for further numerical experiments.

2 DAE-Formulation
Let us consider
1. the SEIR-ODE with an unknown function R(¢),

2. a constraint that prescribes the percentage of the infected population I,

leading to the differential-algebraic equation (DAE)

R
S = —Tmtf-f.s, (5)
1

[o Ti.f.s — £, (6)
1 1

I = TmC-E—Tmf-I, (7)
1

R = Tmf-L (8)

0 = I—i). 9)



In the DAE, the reproduction number R;(t) is an unknown function that
will be computed in dependence of the parameters, the initial values and a given
time-dependent function #(t).

From a DAE point of view, —@D is an index-3 DAE with the following
constraints:

1. We have the explicit contraint @:
I =i(t). (10)

2. The differentiation of together with (7)) leads to

and therefore to the constraint

E =T, (i’(t) + T;nf -i(t)) . (11)

3. Differentiating we obtain

1
E =T (i”(t) + : i’(t)) ,
Tinf
and, using @, therefore

Ri 1
IS —

1
B = Tie (i”(t)+ .i’(t)),
Tinf

such that we obtain the constraint

g:f Ci(t) -8 — (z”(t) + Tilnf .m)) = Tine (i”(t) + Tz-lnf -i’(t)) . (12)

or, more precisely,

Ry S = %)f ((i’(t) + Tlnf -i(t)) + Tine (i"(t) + Tz-lnf -i’(t))) =: (). (13)

In practice R; will not be larger than the basic reproduction number Ry.
Hence, we consider the constraint

7

R i {70} »

We emphasize that r(¢) depends on i(t), 4 (¢) and i"(t), because the DAE-index
was 3. For the function i(¢) we will investigate the following special cases:

1. If i(t) = Iy is constant, then r(¢t) = 1 and

1
Rt = min {RO,S} .



t

2. Ifi(t) = Iy e Tt ori(t) = Iy e Tine, then
R: S =0,
i.e. R should be zero since we assume S # 0.

3. If
i(t)=1Ipe M1,

then we have
i'(t) = =Xi(t), i"(t) = —X\i'(t) = \%i(t)
and therefore for all ¢:

’f’()\) = (/Tinc )\ - 1) (T‘inf )\ - 1) .

4. For our tests, we will also consider an oscillating i(¢) of the form

i(t)=Io(1+a sin(bt)).

3 Solving an Associated ODE
Due to the constraints ,,, the solution of the index-3 DAE —@

for a given i(t) can be computed as follows:

1. Compute I and E according to (10)),(11). Note that I, and E; are fixed
by the contraints at tg.

2. Consider initial values Sy and Ry at tg fulfilling Sy + Rg + Ip + Fp = 1
and solve the ODE

S/ = *g(t)a (15)
A
= i) (16)

MQ:GWH .m0+nm@ﬁplwﬁ0“”my

Since the right-hand side depends on t only, the solution can be obtained
by integration:

t
s = s - [ gwar (17)
to
bt
R = Ro+/ -i(7) dr. (18)
to T”lf
3. R; results from
Re="0_ (19)



Note that this result permits an simple representation of the solution if we
assume that i is an exponential function of the form:

Z(t) = Ioe_At.

In this case, equations , , for to = 0 lead to

Enc

E(t) = 7Tinf (Tinf >\71) i<t)v (20)
SO = S0k (- i), (1)
RO) = Ro+ - (- i(0), (22
)
R = .
W s 7ok (o — i(t) )

4 Some Tests for the DAE-Formulation
We tested the following cases for Tj,. = 5.20 and Tj,y = 2.9:

1. i(t) = Iy = 0.01,

0.01

2. i(t) = 0.0le” Tins ",

3. i(t) = 0.01 (1. + 0.05sin (27¢)). We considered the period 21 days inspired
by regulations of the British governmen

The results can be found in Figure For the numerical solution, the al-

gorithms described in [3] were used. However, the explicit formulas developed
above could also have been used.

For the considered parameters, the results can be interpreted as follows:
1. i(t) = Iy = 0.01 is theoretically possible and easy to estimate,

2. a moderately exponentially decreasing i(t) postpones the time-point at
witch social distancing can end, i.e. R; = Ry,

3. an oscillating i(¢) requires a considerably oscillating R, whereas the over-
all behavior of S and R results to be similar as for i(t) = Iy = 0.01.

All in all, we recognize that reducing the social distancing measures such that

for Ry
R+ < min {RO, ;}

is always given seems to be a desirable goal.

Thttps://www.legislation.gov.uk/uksi/2020/350/regulation/3/made


https://www.legislation.gov.uk/uksi/2020/350/regulation/3/made
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Figure 2: Some results for a constant (top), exponentially decreasing (middle)
and periodic (bottom) function 4, c.f. Section [4}
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Figure 3: Some results for 12 and 20 constant and equidistant values of R;
for the controlled SEIR-ODE obtained with the code from the Appendix. The
similarity to the results obtained in Figure [2| for the exponentially decreasing i
is highly visible.

5 A Control Strategy for the ODE-Formulation

Since in practice R; will not be a continuous function, in the following we
assume that it is a piecewise constant function, where the constant values may
depend on the social distancing policies. If these constant values are given, then
a control strategy to increase R; at the time-point at which % is large enough
can be easily be implemented considering the original SEIR-ODE —. The
results are presented in Figure [3] and the corresponding Python-Code can be

found in the Appendix.

Of course, in practice the estimation of these constant values for R; in de-
pendence of social distancing policies and a good estimation of S will be crucial
for the applicability of such a model.

6 Summary

In this article we outlined how a DAE-approach might be helpful for a better
understanding of SEIR-ODEs and estimated an optimal choice of R;. This
approach should be analogous for more sophisticated models with a realistic
fitting of the parameters. Note that no rigorous bibliographical studies have
been undertaken.
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Appendix

import matplotlib.pyplot as plt
import numpy as np
from scipy.integrate import solve_ivp

def SEIR_controlled(t,y):
#Parameter
Tinc=5.20 # Length of <ncubation period
Tinf=2.9 # Duration patient is infectious

S=y[0]
E=y[1]
I=y[2]
# R=y[3] not used

f=np.zeros(4)

Rt=compute_Rt(S) # Compute R_t in dependence of S

# SEIR-0DE

f[0] = -Rt/Tinf*IxS

f[1] = +Rt/Tinf*I*S-E/Tinc
£[2] = +E/Tinc-I/Tinf

f[3] = +I/Tinf

return f

def compute_Rt(S):
# compute mazimal Rt (for given values Rn) with Rt leq 1/§

R0=2.2 # walue without social distancing

11
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Rt=1.04 # starting value, should be < 1/S0

na=12 # number of adjustments
Rn=np.linspace(Rt,R0,na) # values for Rt

# depending on social distancing, etc.

# It is not necessary to choose Rn equidistant!

for rn in Rn:
if rn < 1/8:
Rt=min (RO, rn)
return Rt

if __name__=="__main__":
HARBRARBRRHAARRRHRA BB RRRA AR R RR R RRH AR
# Initialization
HARBHRARRRHAARRH AR AR RRR AR R RGBSR H
t_span=[0.0,350.0] # time interval in days
I0=0.01
Tinc=5.20 # Length of incubation period
Tinf=2.9 # Duration patient is infectious

EO=I0/Tinf*Tinc # then I'(t_0)=0

R0=0.015
S0=1.0-E0-IO-RO

yO = np.array( [SO,E0,I0,R0]) # inttiall walues
HERBHRBRRRRARRBRRRRRARRRRRRRRRRRARRRRRRRRRRAAA

# Solve initial value problem
HERBHRRBRRRARRRRRRRRARRRARRRRARRRARBRRRRRRARHH
sol_ivp=solve_ivp(SEIR_controlled,t_span,y0O,rtol=1.e-8,atol=1.e-8)
RERBHRRBHRRBRRRRRARRARRRARRRRARRRRRRRRRRRRAR AR

# Plot results

HERBRRBBR AR ARHRRRRRBR R AARRRRRRRR AR RRRRRAAR Y
plt.figure(0)

plt.plot(sol_ivp.t,sol_ivp.y[2,:], 'g', label='I(t)")
plt.plot(sol_ivp.t,sol_ivp.y[1,:], 'b', label='E(t)')

plt.axis([t_span[0],t_span[1], 0., 0.02])
plt.legend(loc="'best"')

12



plt.xlabel('t in days')
plt.ylabel('Relative Population')

plt.figure(1)

plt.plot(sol_ivp.t,sol_ivp.y[0,:], 'b', label='S(t)"')
plt.plot(sol_ivp.t,sol_ivp.yl[3,:]1, 'g', label='R(t)')
plt.axis([t_span[0],t_span[1], 0., 1.0])
plt.legend(loc='best')

plt.xlabel('t in days')

plt.ylabel('Relative Population')

plt.figure(2)

# Compute 1/S and R_t for plot
ln=len(sol_ivp.t)
invS=np.zeros(1ln)
Rt=np.zeros(1ln)
for k in range(ln):
invS[k]=1./sol_ivp.y[0,k]
Rt [k]=compute_Rt(sol_ivp.y[0,k])

plt.plot(sol_ivp.t,invS, 'g', label='1/S(t)')
plt.plot(sol_ivp.t,Rt, 'b', label='Rt(t)')
plt.axis([t_span[0],t_span[1], 0.5, 3.5])
plt.legend(loc='best')

plt.xlabel('t in days')
plt.ylabel('Reproduction number')

#plt.grid()
plt.show()
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