

Fachbereich II Mathematik - Physik - Chemie

Kurzarbeitsanweisung für die DSC 7 von Perkin Elmer

Laborbetreuung: Prof. Dr. Hungerbühler (Laborleiter), M. Sc. Enrico Leo

Erstellt: Berlin, den

Inhaltsverzeichnis

1	Dy	namische Leistungskompensations-Differenzkalorimetrie (DLDK)	1
2	Pr	obenvorbereitung	2
	2.1	Material	2
	2.2	Durchführung	2
3	Au	ıfbau der DSC 7	3
4	Int	petriebnahme der DSC 7	4
5	Sta	arten der Software	5
6	Er	stellen einer Basislinie	5
7	Ka	librierung der DSC 7	8
8	Me	essung einer Probe 1	1
9	Au	swertung einer Probe1	4

1 Dynamische Leistungskompensations-Differenzkalorimetrie (DLDK)

Bei der DLDK befinden sich die Probe und die Referenz in getrennten Mikroöfen, die identisch aufgebaut sind. Ein schematischer Aufbau ist der Abb. 1 zu entnehmen.

Abb. 1 Schematischer Aufbau eines Differenz Leistungskompensations-Kalorimeters (DLDK)^[2]

Die Mikroöfen bestehen aus Platin-Iridium-Legierungen. Jede Kammer beinhaltet einen Temperatursensor (Platin-Widerstands-Thermometer) und einem Heizwiderstand (Platindraht). Die Mikroöfen besitzen einen Durchmesser von ca. 9 mm und eine Höhe von ca. 6 mm und wiegen ca. 2 g. Die Mikroöfen befinden sich wiederum in einem Aluminiumblock, der auf eine konstante Temperatur gehalten wird. Die Messungen können in einem Temperaturbereich von -175 (Kühlung mit flüssigem Stickstoff) bis 725 °C durchgeführt werden. Die Zeitkonstanten sind kleiner als 2 s. Die maximale Heizleistung liegt bei ca. 14 W bei einer maximalen Heizrate von ca. 500 K min⁻¹.

Während des Aufheizens erfahren zunächst beide Proben (Referenz und Probe) die gleiche Heizleistung. Wobei bei thermaler Symmetrie die Temperaturdifferenz gleich Null sein muss. Wenn es dann zu einer Asymmetrie der Temperaturen und somit zu einer Temperaturdifferenz kommt, z. B. verursacht durch eine Reaktion in der Probe, dann wird versucht, diese Temperaturdifferenz durch Steuerung/Kompensation der Heizleistung der Referenz auszugleichen. Diese kann entweder erhöht, aber auch erniedrigt werden. Dabei wird davon ausgegangen, dass die kompensierte elektrische Heizleistung ΔP (mW) vollständig in Wärme aufgenommen bzw. abgegeben wird. Das Integral über die Zeit der kompensierten Heizleistung ist nun proportional der von der Proben freiwerdenden bzw. aufgenommenen Wärmemenge. Die von dem Gerät ausgebende Heizflussrate Φ_M ergibt sich über das reale Messsignal ΔT der Temperaturdifferenz mit den Faktoren k_I und k_2 über:

$$\Delta P = -k_1 \cdot \Delta T \qquad \Phi_M = -k_2 \cdot \Delta T \tag{1}$$

Der Faktor k_1 ist von dem Proportionalkontroller vorgegeben und kann nicht verändert werden. Der Faktor k_2 kann mithilfe der Software und einer Kalibriermessung bestimmt werden^[2].

2 Probenvorbereitung

2.1 Material

- Analysenwaage
- Presswerkzeug
- Pinzette
- Tiegel-Greifer
- Tiegel (unter und Oberseite; bei flüssigen Proben oder proben die Sublimieren könnten werden Tiegel mit Löschern benötigt)

2.2 Durchführung

- Alle Arbeiten werden mit einer **Pinzette** oder einem **Tiegelgreifer** durchgeführt, um Leitfähigkeitsunterschiede durch Verschmutzungen zu vermeiden!!!
- **Tiegelunterseite** wird in die **Presswerkzeugunterseite** gesteckt und auf die Analysenwaage gelegt (Tara wird gedrückt)

- Ca. 3 5 mg Probe werden eingewogen und die Masse notiert
- Tiegeloberseite wird bündig auf die Tiegelunterseite gelegt und das ganze in das Presserwerkzeug überführt
- Hebel wird ein Mal heruntergezogen

Vorsicht beim Zurücklassen des Hebels, kann ruckartig erfolgen!!

• Presswerkzeugunterseite samt Tiegel werden entnommen und auf den Dorn, zum Lösen des Tiegels gesteckt

- Tiegel wird mit Tiegelgreifer in die DSC überführt
- Dabei ist darauf zu achten, dass die Deckel wie folgt angeordnet werden

3 Aufbau der DSC 7

- Thermostat
- DSC7 Perkin Elmer
 - Scanraten: 0,1 500 K/min
 - Temperaturbereich: -60°C bis 725°C
- Controller
- Rechner

Abb. 2 Aufbau der DSC 7 Perkin Elmer

Abb. 3 Schematischer Aufbau des Probenofens

4 Inbetriebnahme der DSC 7

- Einschalten der Geräte in der Reihenfolge
 - **Thermostat** (sollte ca. 20 Minuten laufen vor der ersten Messung)
 - Öffnung des Haupthahns sowie des Feinventils der Gasflasche
 - Bei geschlossenem Ofen müssen ca. 2 Gasblasen pro Sekunde aus dem Spülgasschlauch kommen
 - DSC 7
 - Controller (TAC7/DX)
 - Rechner

!!! Sollte es zu Verbindungsproblemen kommen bzw. Message and er DSC blinkt, müssen Controller, Rechner und DSC 7 noch einmal ausgeschaltet und wie beschrieben eingeschaltet werden.

5 Starten der Software

• Starten des Pyris Mangers

• Die DSC online bringen durch Klicken (ein Mal) auf DDSC, dann warten bis Manager sich öffnet

6 Erstellen einer Basislinie

- In Referenz- sowie Probenofen befinden sich zwei leere Tiegel
- Aufrufen des Methodeneditors
 - Sollte dieser nicht erscheinen, kann er über Window → Method Editor (Haken) wieder aktiviert werden
- Folgende Angaben werden unter **Sample Info** getätigt:

🖹 Method Editor - Indiumstandar	rd_ed_02082010_12. ddd 💿 🗖 💽
Sample Info Initial State Pr	ogram View Program
Method File	Name: Indiumstandard_ed_02082010_12.ddd
Data to b) "Basislinie" schreiben
Sample Into Sample ID: Indumstandard Operator ID: Ind Comment: 3) 0,0 mg eintragen	2) Kürzel C:\DSC_Data\Erik File Name: Indiumstandard_ed_02082
Enter Sample Weight	4) Auswahl des Speicherortes
Weight: 5.600 mg	C:\DSC_Data\Basislinie
	Speichern unter:
	Basislinie_Datum_Temp.Bereich_Heizrate
	Bsp.:
	basislinie_02082010_30bis300_10Kmin

• Folgende Angaben werden unter Initial State getätigt:

Sample Info Initial State Program	View Program		
Method File Name: Indiumstandard_ed_02082010_12.ddd Sample ID: Indiumstandard Data to be saved as: Indiumstandard_ed_02082010_12.ddd Pre-Run Actions - Click Right Mouse button for options F			
– Set Initial Values	- Baseline File		
Temperature: 🗖 0.00 🚍 °C	Directory C:\DSC_Data\Erik		
Y Initial: 20.00 €mW	File Name: Basislinie ed 02082010_40C_300C_		
- Data Collection			
Sample Rate: Standard	Use Baseline Subtraction Browse		

- Bei der Auswahl des Temperaturbereichs der Basislinie ist darauf zu achten, dass dieser alle Messungen des Tages abdecken sollte. Ferner sollte die Heizrate mit den Heizraten der Proben übereinstimmen.
- Es können im Folgenden keine Proben vermessen werden, deren Temperaturbereich den Temperaturbereich der Basislinie überschreitet
- Folgende Angaben werden unter **Program** getätigt:

• Unter **View Program** kann dann der gesamte Verlauf der Messung betrachtet werden

• Die Messung wird mit

gestartet und kann dann mit

gestoppt werden

7 Kalibrierung der DSC 7

• Für die Kalibrierung der DSC 7 muss zunächst ein geeigneter Kalibrierstandard ausgewählt werden

Tab. 1 Kalibrierstandards für die DS	SC
--------------------------------------	----

Standard	Schmelztemperatur (°C)	Schmelzenthalpie (J/g)	Molmasse (g/mol)
Indium	156,60	28,45	114,82
Zinn	231,88	60,46	118,71
Blei	327,47	23,01	207,20
Zink	419,47	108,37	65,41

- Ca. 3 5 mg (Masse notieren!!!) des Standards werden in einen Aluminiumtiegel eingewogen, verschlossen und in die DSC überführt (auf Probenseite) als Referenzprobe dient ein leerer Tiegel
- Folgende Angaben werden unter **Sample Info** getätigt:

🔓 Method Editor - Indiumstandar	rd_ed_02082010_12.ddd		
Sample Info Initial State Pro	ogram View Program		
Method File	Name: Indiumstandard_ed_02082010_12.ddd		
Data to b) Bezeichnung des Standards		
Sample ID: Indiumstandard	2) Kürzel Directory: C:\DSC_Data\Erik Fije Name:		
3) Einwaage des Standards !!! Punkt kein Komma			
Enter Sample Weight	4) Auswahl des Speicherortes		
Weight: 5.600 mg	C:\DSC_Data\Kalibrierstandards		
	Speichern unter:		
	Standard_Datum_Heizrate_Nummer		
	Bsp.:		
	indium_02082010_10Kmin_01		

• Folgende Angaben werden unter Initial State getätigt:

- Die **Start- und Endtemperaturen** sollten mind. **30**°C unter bzw. über der Schmelztemperatur des Standards liegen
- Folgende Angaben werden unter **Program** getätigt:

Sample Info Initial State Pr	rogram View Program			
Method File Name: Indiumstandard_ed_02082010_12.ddd Sample ID: Indiumstandard Data to be saved as: Indiumstandard_ed_02082010_12.ddd				
E Temperature Program	170.00°C at 10.00°C/min	Insert a step		
Delete Item Add Action Add Event Edit Step 1) Term z.B. 180°C				

• Unter **View Program** kann dann der gesamte Verlauf der Messung betrachtet werden

vorzeitig

- Die Messung wird mit gestartet und kann dann mit
 - gestoppt werden Ausgewertet werden die Fläche (**Schmelzenthalpie**) sowie die **Onset-Temperatur**
 - siehe Auswertung einer Probe

•

- Die Abweichungen der Schmelztemperatur (**Onset**) sowie der Schmelzenthalpie sollten nicht größer als 1% betragen.
- Ist die Abweichung kleiner muss nichts weiter eingestellt werden, ansonsten weiter wie folgt
- Aufrufen der Kalibriereinstellungen unter View → Calibrate (Es darf keine Auswertefenster markiert sein)
- Eingabe der Schmelztemperatur unter **Temperature**:

- Es können mehrere Kalibrierungen für verschiedene Temperaturbereiche aktiviert werden
- Mit Save an Apply wird die Kalibrierung gespeichert unter: Cal_Standard_Datum
- Eingabe der Schmelzenthalpie unter **Heat Flow**:

- Mit **Save and Apply** wird die Angabe bestätigt und unter dem selben Datenfile wie zuvor gespeichert
- Anschließend sollte noch einmal der Standard mit dem selben Programm gemessen werden, um die Wirksamkeit der Änderungen zu bestätigen

8 Messung einer Probe

- Ca. 3 5 mg (Masse notieren!!!) der Probe werden in einen Aluminiumtiegel eingewogen, verschlossen und in die DSC überführt (auf Probenseite) als Referenzprobe dient ein leerer Tiegel
- Method Editor wird aufgerufen (falls er nicht erscheint kann er unter Window →
 Method Editor aktiviert werden
- Folgende Angaben werden unter **Sample Info** getätigt:

B Method Editor - Indiumstandard_ed_02082010_12.	Auswahl des Speicherortes
Sample Info Initial State Program View Program	C:\DSC_Data\Neuer Gruppenordner
Bezeichnung der Probe	Speichern unter:
Data to be saved as: Indiumstandard_ed_0	Probe_Datum_Heizrate_Nummer
Enter Sample Info	Bsp.:
Sampe ID: Intellinistenderer Doester ID: ed + Kürzel	benzamid_02082010_10Kmin_01
	Indiumstandard ed 22082
Einwaage der Probe !!!	Browse
Enter Sample Weight Weight: 5.600 mg	

• Folgende Angaben werden unter Initial State getätigt:

Sample Info Initial State Program View Program			
Method File Name: Indiumstandard_ed_02082010_12.ddd Sample ID: Indiumstandard Data to be saved as: Indiumstandard_ed_02082010_12.ddd Pre-Run Actions - Click Right Mouse button for options			
Start the Run Switch the Gas to Nitrogen at 20.0 ml/min Action occurs Immediately Starttemperatur Häkchen setzen !!!!			
z.B. 110°C	Zuvor bestimmte Ba- sislinie auswählen		
Temperature: ➡0.00 ➡ *C Y Initiak 20.00 ➡ mW Data Collection ➡ Sample Rate: Standard	C_300C_ vise		

• Folgende Angaben werden unter **Program** getätigt:

• Unter **View Program** kann dann der gesamte Verlauf der Messung betrachtet werden

 Die Messung wird mit gestoppt werden

-

gestartet und kann dann mit

9 Auswertung einer Probe

- Der Datenfile der Probe wird über ¹²² in der Taskleiste aufgerufen
- Sollten mehrere Stufen in der Messung vorhanden sein (z.B. Aufheizen, Abkühlen, Aufheizen etc.) so muss zunächst die Stufe ausgewählt werden, die bearbeitet werden soll unter: Curves → Heat Flow
- Auswahl der Stufe
- Es darf nur die Stufe mit Blau hinterlegt sein, die bearbeitet werden soll

Ĩ	Step Select	×
	File: C:\DSC_Data\PCM SS2010\Gruppe Curve Type: Heat Flow Select the steps to be displayed: 1) Heat from 28.00°C to 160.00°C at 10.00°C/min 2) Cool from 160.00°C to 28.00°C at 10.00°C/min	OK Cancel Select All
1) Display each step as a separate curve	Help

- Mit **OK** wird die Stufe ausgewählt
- Es folgt die Auswertung des Peaks unter: Calc → Peak Area in der Taskleiste
- Durch Drücken der linken Maustaste und **halten** können die zwei Integrationspunkte vor und hinter dem Peak gesetzt werden:

• Durch Calculate wird der Peak ausgewertet